Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (9): 1145-1159    DOI: 10.11900/0412.1961.2019.00088
Overview Current Issue | Archive | Adv Search |
Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys
ZHANG Jun1(),JIE Ziqi1,2,HUANG Taiwen1,YANG Wenchao1,LIU Lin1,FU Hengzhi1
1. State Key Laborotory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
2. School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
Cite this article: 

ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys. Acta Metall Sin, 2019, 55(9): 1145-1159.

Download:  HTML  PDF(25770KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Equiaxed grain cast superalloys are widely used in aeroengine and other fields due to their low manufacturing cost and excellent mechanical properties at medium and low temperatures. Aeroengine casing is a typical complex thin-walled equiaxed superalloy castings used at medium and low temperatures. The complex thin-walled superalloy investment castings with the complex structures, the accurate size and the lightweight are the key components for advanced aeroengines. The coordinated control of the precise forming and the solidification microstructure for these castings is very difficult. Correspondingly, the requirements for materials, casting technologies, structure controls and mechanical properties in superalloy integral structure castings are becoming increasingly higher. In this paper, the development and application of polycrystalline superalloys, solidification and forming, the simulations and the new technologies are reviewed.

Key words:  Ni-based cast superalloy      equiaxed grain      solidification and forming      grain refinement      computation simulation     
Received:  01 April 2019     
ZTFLH:  TG21  
Fund: Supported by National Key Research and Development Program of China(2016YFB0701400、2017YFB0702900);National Natural Science Foundation of China(51631008、51690163、51771148);Fundamental Research Funds for the Central Universities(3102017ZY054、3102018JCC009)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00088     OR     https://www.ams.org.cn/EN/Y2019/V55/I9/1145

Fig.1  Effects of pouring temperature and trace elements on fluidity of K4169 superalloy (Lf—fluidity length, Tp—pouring temperature)[14]
Fig.2  Temperature dependence of total structure factors curves of the Ni-Cr-W superalloy (Q—scattering vector, S(Q)—structure factor)[30]
Fig.3  The effect of melt superheating temperature on viscosity and surface tension of superalloy melt (σ—surface tension, ν—viscosity, T—temperature)[35]
Fig.4  Effect of melt superheating temperature on nucleation supercooling of K4169 superalloy[38]
Fig.5  The evolution of grain structure with the superheating temperature (Ts) (d—grain size)[38](a) 1380 ℃ (b) 1500 ℃ (c) 1550 ℃ (d) 1600 ℃ (e) 1680 ℃
Fig.6  Schematic of thermally controlled solidification process (a), grain structures (b) and microporosity (c)[14]
Fig.7  Macrostructures of IN100 superalloy obtained under the various refining processes[60](a) without, grain size: 3.45 mm(b) with 15 s lag time and 120 A current intensity, grain size: 0.44 mm(c) with 5 s lag time and 150 A current intensity, grain size: 0.16 mm(d) with inoculants, 5 s lag time and 150 A current intensity, grain size: 0.095 mm
RefinerCrystal structurea / nmAlloyRef.
Co2AlO4fcc0.8130IN713, K4169[62]
NiAlTifccK4169, K403[63]
TiNfcc0.4187K403, K4169[64]
TiBfcc0.4187IN713, MAR-M246[65]
WO2fccNimonic[65]
Ni3Alfcc0.3561IN718, IN713[65]
NbCbcc0.4471IN718, IN713[65]
Ni-W-10Y2O3bcc1.060Ni(Fe)-W[66]
Table 1  The refiners used in superalloys[62,63,64,65,66]
Fig.8  The grain structures under different casting conditions[68](a) convention casting process, grain size: 4560 μm(b) convention casting with grain refiners, grain size: 1230 μm(c) thermally-controlled solidification process, grain size: 3340 μm(d) thermally-controlled solidification with grain refiners, grain size: 126 μm (convention casting: pouring temperature is 1380 ℃, mold temperature is 1290 ℃, withdrawal speed is 0 μm/s; thermally-controlled solidification: pouring temperature is 1380 ℃, mold temperature is 1290 ℃, withdrawal speed is 400 μm/s)
Fig.9  Orientation relationship between grain refiner and nickel grains and heterogeneous nucleation mechanism[69](a) simulated interface between the CrFeNb intermetallic particle and Ni grain(b) the superimposed atomic configuration on (111)Ni/(0004)CrFeNb
Fig.10  γ' evolution during tensile creep at 950 ℃ and 300 MPa obtained through phase-field simulation (t—time)[91]'(a) t=660 s (b) t=4620 s (c) t=132000 s (d) t=198000 s (e) t=231000 s (f) vertical section of Fig.10e obtained from (010) surface
Fig.11  Creep strain curve (a) and creep rate curve (b) at 950 ℃ and 300 MPa obtained through phase-field simulation[91]
Fig.12  Schematic illustration of the counter gravity low pressure inert-atmosphere melting and casting process (a), IN713C turbocharger wheel (b) and Haynes 230 high temperature probe (c)[95]
Fig.13  Applications of additive manufacturing in superalloy(a) turbine blade[103] (b) turbine blade repair[104] (c) GE aviation fuel nozzle[105]
[1] ChenW H, ChenR Z. Development of aerospace investment casting technique [J]. J. Aeronaut. Mater., 1992, 12(1): 57
[1] 陈婉华, 陈荣章. 宇航熔模铸造技术的发展 [J]. 航空材料学报, 1992, 12(1): 57)
[2] XiongY C. Basic research of precision forming technology of aviation complex components [J]. Aeronaut. Manuf. Technol., 2010, (2): 54
[2] 熊艳才. 航空复杂构件精确成形技术基础研究 [J]. 航空制造技术, 2010, (2): 54)
[3] YuanW M, ChenR Z. Precision casting technology for large thin wall Superalloy integral castings [J]. Aeronaut. Manuf. Eng., 1997, (1): 15
[3] 袁文明, 陈荣章. 高温合金大型薄壁整体铸件精铸技术的发展 [J]. 航空制造工程, 1997, (1): 15)
[4] GuoJ T. Review on whrought superalloy and equiaxed crystal cast superalloy materials and their application basic theories [J]. Acta Metall. Sin., 2010, 46: 1303
[4] 郭建亭. 变形高温合金和等轴晶铸造高温合金材料与应用基础理论研究 [J]. 金属学报, 2010, 46: 1303
[5] China Aviation Materials Manual Editorial Committee. China Aeronautical Materials Handbook [M]. 2nd Ed., Beijing: Standards Press of China, 2001: 689
[5] (中国航空材料手册编委会. 中国航空材料手册 [M].第2版, 北京: 中国标准出版社, 2001: 689)
[6] MotturaA, WarnkenN, MillerM K, , et al. Atom probe tomography analysis of the distribution of rhenium in nickel alloys [J]. Acta Mater., 2010, 58: 931
[7] DingQ Q, LiS Z, ChenL Q, , et al. Re segregation at interfacial dislocation network in a nickel-based superalloy [J]. Acta Mater., 2018, 154: 137
[8] TangY L, HuangM, XiongJ C, , et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta Mater., 2017, 126: 336
[9] ZhangJ, LouL H. Basic Research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 54: 1637
[9] 张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 54: 1637
[10] CowlesB, BackmanD, DuttonR. Verification and validation of ICME methods and models for aerospace applications [J]. Integr. Mater. Manuf. Innovat., 2012, 1: 2
[11] StewartC A, RheinR K, SuzukiA, , et al. Oxide scale formation in novel γ-γ' cobalt-based alloys [A]. Proceedings of the 13th International Symposium on Superalloys [C]. Warrendale, PA: TMS, 2016: 991
[12] KirklinS, SaalJ E, HegdeV I, , et al. High-throughput computational search for strengthening precipitates in alloys [J]. Acta Mater., 2016, 102: 125
[13] KennedyR L. Allvac 718plus, superalloy for the next forty years [A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Warrendale, PA: TMS, 2005: 1
[14] JieZ Q. Influence of trace element and melt treatment on microstructure and property of K4169 superalloy [D]. Xi'an: Northwestern Polytechnical University, 2018
[14] 介子奇. 微量元素及熔体处理对K4169高温合金组织和性能的影响 [D]. 西安: 西北工业大学, 2018
[15] NiuJ P, YangK N, SunX F, , et al. Investigation on deoxidation during VIM refining Ni-base superalloy by using CaO crucible [J]. Acta Metall. Sin., 2002, 38: 303
[15] 牛建平, 杨克努, 孙晓峰等. 用CaO坩埚真空感应熔炼镍基高温合金脱氧研究 [J]. 金属学报, 2002, 38: 303
[16] ChenF W, HuangX B, WangY, , et al. Investigation on foam ceramic filter to remove inclusions in revert superalloy [J]. Mater. Lett., 1998, 34: 372
[17] GuiZ L. Development of nickel-based superalloy technology [J]. Aeronaut. Manuf. Eng., 1995, (4): 12
[17] 桂忠楼. 镍基高温合金BTOP工艺的发展 [J]. 航空制造工程, 1995, (4): 12)
[18] NiuJ P. Preparation Technology of Pure Steel and Superalloy [M]. Beijing: Metallurgical Industry Press, 2009: 35
[18] 牛建平. 纯净钢及高温合金制备技术 [M]. 北京: 冶金工业出版社, 2009: 35)
[19] ZhangK R. Homogeneous microstructure of bulk K4169 superalloy obtained by stable undercooling [D]. Xi'an: Northwestern Polytechnical University, 2015
[19] 张可人. K4169高温合金大体积深过冷凝固与力学性能研究 [D]. 西安: 西北工业大学, 2015
[20] HosamaniL. Method of casting a metal article [P]. Europe Pat, 0711215B1, 2002
[21] DongA P, YanN S, ZhangJ, , et al. Investigation of thin-walled IN718 castings by counter-gravity investment casting [A]. Advances in the Science and Engineering of Casting Solidification [C]. New York: Springer, 2015: 399
[22] DebroyT, WeiH L, ZubackJ S, , et al. Additive manufacturing of metallic components-process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
[23] TyagunovA G, BaryshevE E, KostinaT K, , et al. Thermal stability of the structure of a high-temperature nickel alloy fabricated by two different technologies [J]. Met. Sci. Heat Treat., 1999, 41: 538
[24] KolotukhinE V, TjagunovG V. Crystallization of superalloys with various contents of carbon [J]. J. Mater. Proc. Technol., 1995, 53: 219
[25] BalakinY A, GladkovM I. Thermodynamic analysis of high-temperature treatment of metallic melts: Part I [J]. Russ. Metall., 2008, 2008: 611
[26] BalakinY A, GladkovM I. Thermodynamic analysis of high-temperature treatment of metallic melts: Part II [J]. Russ. Metall., 2008, 2008: 730
[27] YinF S, SunX F, GuanH R, , et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963 [J]. J. Alloys Compd., 2004, 364: 225
[28] WangZ, LiJ G, ZhaoN R, , et al. Effect of the melt treatment temperature on the melt structure and microstructure of a nickel based single crystal superalloy [J]. Acta Metall. Sin., 2002, 38: 920
[28] 王 震, 李金国, 赵乃仁等. 熔体处理温度对镍基单晶高温合金熔体结构和凝固组织的影响 [J]. 金属学报, 2002, 38: 920
[29] Calvo-DahlborgM, PopelP S, KramerM J, , et al. Superheat-dependent microstructure of molten Al-Si alloys of different compositions studied by small angle neutron scattering [J]. J. Alloys Compd., 2013, 550: 9
[30] GaoZ T, HuR, WangJ, , et al. Heredity of medium-range order structure from melts to the microstructure of Ni-Cr-W superalloy [J]. Appl. Phys., 2015, 120A: 183
[31] ZuF Q, ZhuZ G, GuoL J, , et al. Observation of an anomalous discontinuous liquid-structure change with temperature [J]. Phys. Rev. Lett., 2002, 89: 125505
[32] MaJ B, ChenS H, DaiY B, , et al. The local structure of molten Ni1-xAlx: An ab initio molecular dynamics study [J]. J. Non-Cryst. Solids, 2015, 425: 11
[33] KurakovaN V, MolokanovV V, SterkhovaI V, , et al. Effect of the state of a melt on the glass-forming ability, structure, and properties of a melt-quenched bulk amorphous nickel-based alloy [J]. Russ. Metall., 2007, 2007: 519
[34] BodakinN E, BaumB A, KostinaT K. Effect of melting conditions on the thermal expansion coefficient of alloy 36N [J]. Met. Sci. Heat Treat., 1979, 21: 323
[35] BaryshevE E, TyagunovG V, BaumB A, , et al. The influence of melt state on atomization process and quality of powders on iron and nickel base [J]. J. Phys., 2008, 98: 072017
[36] StepanovaN N, RodionovD P, TurkhanY E, , et al. Phase stability of nickel-base superalloys solidified after a high-temperature treatment of the melt [J]. Phys. Met. Metall., 2003, 95: 602
[37] WangH F, SuH J, ZhangJ, , et al. Effect of melt thermal history on solidification behavior and microstructural characteristics of a third-generation Ni-based single crystal superalloy [J]. J. Alloys Compd., 2016, 688: 430
[38] JieZ Q, ZhangJ, HuangT W, , et al. The influence of melt superheating treatment on the cast structure and stress rupture property of IN718C superalloy [J]. J. Alloys Compd., 2017, 706: 76
[39] ZhangJ, LiB, ZhouM M, , et al. Microstructure and stress rupture property of Ni-based monocrystal superalloy with melt superheating treatment [J]. J. Alloys Compd., 2009, 484: 753
[40] YinF S, SunX F, LiJ G, , et al. Effects of melt treatment on the cast structure of M963 superalloy [J]. Scr. Mater., 2003, 48: 425
[41] YinF S, SunX F, LiY B, , et al. Effect of melt superheating treatment on the microstructure and high temperature stress rupture properties of M963 superalloy [J]. Acta Metall. Sin., 2003, 39: 75
[41] 殷凤仕, 孙晓峰, 李耀彪等. 熔体过热处理对M963合金组织和高温持久性能的影响 [J]. 金属学报, 2003, 39: 75
[42] PeiZ Y, LiJ T, ZhaoM H, , et al. Influence of melt super-heating treatment on grain and carbides of K465 alloy [J]. J. Iron Steel Res., 2008, 20(2): 49
[42] 裴忠冶, 李俊涛, 赵明汉等. 熔体过热处理对K465合金晶粒和碳化物的影响 [J]. 钢铁研究学报, 2008, 20(2): 49)
[43] LiuL, ZhenB L, BanerjiA, , et al. Effect of melt homogenization temperature on the cast structures of IN 738 LC superalloy [J]. Scr. Metall. Mater., 1994, 30: 593
[44] WangC S, ZhangJ, LiuL, , et al. Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy [J]. J. Mater. Sci. Technol., 2011, 27: 668
[45] LiuL. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273
[45] 刘 林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273
[46] ShiC X, ZhongZ Y. Fifty Years of Superalloy in China [M]. Beijing: Metallurgical Industry Press, 2006: 72
[46] 师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 72)
[47] BrinegarJ R, NorrisL F, RozenbergL. Microcast-X fine grain casting—A progress report [A].Superalloy 1984 [C]. Warrendale, PA: TMS, 1984: 23
[48] WouldsM, BensonH. Development of a conventional fine grain casting process [A].Superalloy 1984 [C]. Warrendale, PA: TMS, 1984: 3
[49] WeiC N, BorH Y, MaC Y, , et al. A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties [J]. Mater. Chem. Phys., 2003, 80: 89
[50] MaY, SunJ H, XieX S, , et al. An investigation on fine-grain formation and structural character in cast IN718 superalloy [J]. J. Mater. Proc. Tehnol., 2003, 137: 35
[51] FerroP D, ShendyeS B. Thermal analysis from thermally-controlled solidification (TCS) trials on large investment castings [A].Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 531
[52] ZhengL, ZhangG Q, XiaoC B, , et al. The interdendritic-melt solidification control (IMSC) and its effects on the porosity and phase change of a Ni-based superalloy [J]. Scr. Mater., 2014, 74: 84
[53] BrinegarJ R, ChamberlainK R, VresicsJ J, , et al. A method of forming a fine-grained equiaxed casting [P]. US Pat, 4832112, 1989
[54] LiX, GagnoudA, FautrelleY, , et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field [J]. Acta Mater., 2012, 60: 3321
[55] FengX H, YangY S. Numerical modeling of crystal growth of a nickel-based superalloy with applied direct current [J]. J. Cryst. Growth, 2011, 334: 170
[56] FlemingsM C. Behavior of metal alloys in the semisolid state [J]. Metall. Trans., 1991, 22A: 957.
[57] MaX P, LiY J, YangY S. Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417 [J]. J. Mater. Res., 2009, 24: 2670
[58] JiaP, WangE G, LuH, , et al. Effect of electromagnetic field on microstructure and mechanical property for Inconel 625 superalloy [J]. Acta Metall. Sin., 2013, 49: 1573
[58] 贾 鹏, 王恩刚, 鲁 辉等. 电磁场对Inconel 625合金凝固组织及力学性能的影响 [J]. 金属学报, 2013, 49: 1573
[59] ZhaoJ C, YanP, PengY F, , et al. An advanced precision cast technology for equiaxed fine grain superalloys casting [J]. Aerosp. Manuf. Technol., 2013, (6): 1
[59] 赵京晨, 燕 平, 彭艳锋等. 高温合金细晶铸造新技术 [J]. 航天制造技术, 2013, (6): 1)
[60] JinW Z, BaiF D, LiT J, , et al. Grain refinement of superalloy IN100 under the action of rotary magnetic fields and inoculants [J]. Mater. Lett., 2008, 62: 1585
[61] LiuL, HuangT W, XiongY H, , et al. Grain refinement of superalloy K4169 by addition of refiners: Cast structure and refinement mechanisms [J]. Mater. Sci. Eng., 2005, A394: 1
[62] ZhaoH T, ShiC X. Investigation of CoO inoculant for surface grain refinement of cast nickel-base superalloy blades [J]. Acta Metall. Sin., 1981, 17: 118
[62] 赵惠田, 师昌绪. CoO孕育剂促进铸造镍基高温合金晶粒细化的研究 [J]. 金属学报, 1981, 17: 118
[63] XiongY H, WeiX Y, DuJ, , et al. Grain refinement of superalloy IN718C by the addition of inoculants [J]. Metall. Mater. Trans., 2004, 35A: 2111
[64] LiX H, CaoL M, ZhangY, , et al. Effect of refiner TiN on microstructure of K4169 superalloy [J]. Foundry, 2010, 59: 1290
[64] 李相辉, 曹腊梅, 张 勇等. TiN细化剂对K4169高温合金组织的影响 [J]. 铸造, 2010, 59: 1290
[65] BenerjiA, ReifW. Present situation of grain-refinement and its effect on product quality [J]. Metall, 1987, 41: 393
[66] JiangW G, YangM C, LouL H, , et al. Preparation of Ni-W-10Y2O3 refiner and refinement mechanism in a superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2011, 24: 365
[67] JieZ Q, ZhangJ, HuangT W, , et al. Effects of grain refinement on cast structure and tensile properties of superalloy K4169 at high pouring temperature [J]. China Foundry, 2016, 13: 101
[68] JieZ Q, ZhangJ, HuangT W, , et al. Enhanced grain refinement and porosity control of the polycrystalline superalloy by a modified thermally-controlled solidification [J]. Adv. Eng. Mater., 2016, 18: 1785
[69] YangW C, QuP F, LiuL, , et al. Nucleation crystallography of Ni grains on CrFeNb inoculants investigated by Edge‐to‐Edge matching model in an IN718 superalloy [J]. Adv. Eng. Mater., 2018, 20: 1700568
[70] GongL, ChenB, DuZ H, , et al. Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34: 541
[71] WuY S, ZhangM C, XieX S. The design and research of a new low cobalt-molybdenum niobium-containing Ni-base superalloy for 700 ℃ advanced ultra-supercritical power plants [J]. Proced. Eng., 2015, 130: 617
[72] RazumovskiyV I, LozovoiA Y, RazumovskiiI M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion [J]. Acta Mater., 2015, 82: 369
[73] ChandranM, SondhiS. First-principle calculation of APB energy in Ni-based binary and ternary alloys [J]. Modell. Simul. Mater. Sci. Eng., 2011, 19: 025008
[74] ReedR C, TaoT, WarnkenN. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5893
[75] ConduitB D, JonesN G, StoneH J, , et al. Design of a nickel-base superalloy using a neural network [J]. Mater. Des., 2017, 131: 358
[76] BolcavageA, BrownP D, CedozR, , et al. Integrated computational materials engineering from a gas turbine engine perspective [J]. Integr. Mater. Manuf. Innovat., 2014, 3: 13
[77] SeoS M, KimI S, JoC Y, , et al. Grain structure prediction of Ni-base superalloy castings using the cellular automaton-finite element method [J]. Mater. Sci. Eng., 2007, A449-451: 713
[78] WangN, LiuL, GaoS F, , et al. Simulation of grain selection during single crystal casting of a Ni-base superalloy [J]. J. Alloys Compd., 2014, 586: 220
[79] ReyesL A, PáramoP, ZamarripaA S, , et al. Grain size modeling of a Ni-base superalloy using cellular automata algorithm [J]. Mater. Des., 2015, 83: 301
[80] DongH B, YangX L, LeeP D, , et al. Simulation of equiaxed growth ahead of an advancing columnar front in directionally solidified Ni-based superalloys [J]. J. Mater. Sci., 2004, 39: 7207
[81] AlabortF, BarbaD, SulzerS, , et al. Grain boundary properties of a nickel-based superalloy: Characterisation and modelling [J]. Acta Mater., 2018, 151: 377
[82] WangW, LeeP D, McLeanM. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
[83] NieP, OjoO A, LiZ G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy [J]. Acta Mater., 2014, 77: 85
[84] ZhouN, LvD C, ZhangH L, , et al. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation [J]. Acta Mater., 2014, 65: 270
[85] KundinJ, MushongeraL, GoehlerT, , et al. Phase-field modeling of the γ′-coarsening behavior in Ni-based superalloys [J]. Acta Mater., 2012, 60: 3758
[86] RettigR, SingerR F. Numerical modelling of precipitation of topologically close-packed phases in nickel-base superalloys [J]. Acta Mater., 2011, 59: 317
[87] ZhuT, WangC Y. Misfit dislocation networks in the γ/γ' phase interface of a Ni-based single-crystal superalloy: Molecular dynamics simulations [J]. Phys. Rev., 2005, 72B: 014111
[88] WarnkenN, MaD, DrevermannA, , et al. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys [J]. Acta Mater., 2009, 57: 5862
[89] YangM, ZhangJ, WeiH, , et al. Influence of cooling rate on the formation of bimodal microstructures in nickel-base superalloys during continuous two-step aging [J]. Comput. Mater. Sci., 2018, 149: 14
[90] TsukadaY, MurataY, KoyamaT, , et al. Creep deformation and rafting in nickel-based superalloys simulated by the phase-field method using classical flow and creep theories [J]. Acta Mater., 2011, 59: 6378
[91] YangM, ZhangJ, WeiH, , et al. A phase-field model for creep behavior in nickel-base single-crystal superalloy: Coupled with creep damage [J]. Scr. Mater., 2018, 147: 16
[92] LiuB C, JingT. Simulation and Quality Control of Foundry Engineering [M]. Beijing: China Machine Press, 2001: 15
[92] 柳百成, 荆 涛. 铸造工程的模拟仿真与质量控制 [M]. 北京: 机械工业出版社, 2001: 15)
[93] QiX, ZhangY, GuH P, , et al. Numerical simulation and process optimization of thermally controlled solidification of K4169 superalloy engine case [J]. Foundry, 2015, 64: 851
[93] 戚 翔, 张 勇, 谷怀鹏等. K4169高温合金机匣热控凝固工艺的数值模拟及优化 [J]. 铸造, 2015, 64: 851
[94] DuQ, LiD Z, HuZ Y. Simulation coupling heat transfer to fluid flow during mold filling [J]. Foundry, 2000, 49: 336
[94] 杜 强, 李殿中, 胡志勇. 铸件充型过程中的流动与传热耦合模拟 [J]. 铸造, 2000, 49: 336
[95] ShendyeS, KingB, McquayP. Mechanical properties of counter-gravity cast IN718[A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Narrendale, PA: TMS, 2005, 124: 133
[96] MishraS, RanjanaR. Reverse solidification path methodology for dewaxing ceramic shells in investment casting process [J]. Mater. Manuf. Proc., 2010, 25: 1385
[97] SunB D, WangJ, ShuD, , et al. Precision Forming Technology of Large Superalloy Castings for Aircraft [M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 10
[97] 孙宝德, 王 俊, 疏 达等. 航空发动机高温合金大型铸件精密成型技术 [M]. 上海: 上海交通大学出版社, 2016: 10)
[98] HebsurM G. Processing of IN-718 lattice block castings [A]. Processing and Properties of Lightweight Cellular Metals and Structures [C]. Warrendale, PA: The Minerals, Metals & Materials Society, 2002: 85
[99] ChengY C. Counter-gravity casting simulation of superalloy casting with large thin-walled structure characteristc [D]. Xi'an: Northwestern Polytechnical University, 2014
[99] 程运超. 大面积薄壁结构特征高温合金铸件反重力铸造过程模拟 [D]. 西安: 西北工业大学, 2014
[100] HerzogD, SeydaV, WyciskE, , et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
[101] MurrL E, MartinezE, AmatoK N, , et al. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science [J]. J. Mater. Res. Technol., 2012, 1: 42
[102] K?rnerC. Additive manufacturing of metallic components by selective electron beam melting—A review [J]. Int. Mater. Rev., 2016, 61: 361
[103] GuoN N, LeuM C. Additive manufacturing: Technology, applications and research needs [J]. Front. Mech. Eng., 2013, 8: 215
[104] HoebelM, FehrmannB, SchnellA. Robot guided laser repair of single crystal turbine blades [A]. Power-Gen Europe [C]. Tulsa, Oklahoma: PennWell Publishing Corporation, 2003: 6
[105] GrunewaldS J. GE is using 3D printing and their new smart factory to revolutionize large-scale manufacturing.
[106] SuiS, ChenJ, MaL, , et al. Microstructures and stress rupture properties of pulse laser repaired Inconel 718 superalloy after different heat treatments [J]. J. Alloys Compd., 2019, 770: 125
[107] ZhangY C, YangL, DaiJ, , et al. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition [J]. Opt. Laser Technol., 2016, 80: 220
[108] ZhouY, WangY, FangY, , et al. Wear resistance of Ti5Si3/NiTi biphase intermetallic compound alloy by laser melting deposition [J]. Rare Met. Mater. Eng., 2010, 39: 1411
[109] AmatoK N, GaytanS M, MurrL E, , et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229
[110] KunzeK, EtterT, Gr?sslinJ, , et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM) [J]. Mater. Sci. Eng., 2015, A620: 213
[111] WangF, WuX H, ClarkD. On direct laser deposited hastelloy X: Dimension, surface finish, microstructure and mechanical properties [J]. Mater. Sci. Technol., 2011, 27: 344
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[3] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[4] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[6] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[7] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[8] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[9] Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation[J]. 金属学报, 2018, 54(5): 757-765.
[10] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
[11] Lili ZHANG, Hongxiang JIANG, Jiuzhou ZHAO, Lu LI, Qian SUN. A New Understanding Toward Effect of Solute Ti on Grain Refinement of Aluminum by Al-Ti-B Master Alloy: Kinetic Behaviors of TiB2 Particles and Effect of Solute Ti[J]. 金属学报, 2017, 53(9): 1091-1100.
[12] Zhiqiang ZHANG,Limin DONG,Shaoxuan GUAN,Rui YANG. Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing[J]. 金属学报, 2017, 53(4): 415-422.
[13] Ning LI,Rong ZHANG,Limin ZHANG,Hui XING,Pengfei YIN,Yaoyan WU. Study on Grain Refinement Mechanism of Hypoeutectic Al-7%Si Alloy Under Low Voltage Alternating Current Pulse[J]. 金属学报, 2017, 53(2): 192-200.
[14] Jinrong ZUO,Longgang HOU,Jintao SHI,Hua CUI,Linzhong ZHUANG,Jishan ZHANG. PRECIPITATES AND THE EVOLUTION OF GRAIN STRUCTURES DURING DOUBLE-STEP ROLLING OF HIGH-STRENGTH ALUMINUM ALLOYAND RELATED PROPERTIES[J]. 金属学报, 2016, 52(9): 1105-1114.
[15] Yuefei TENG,Yingju LI,Xiaohui FENG,Yuansheng YANG. EFFECT OF RECTANGLE ASPECT RATIO ON GRAIN REFINEMENT OF SUPERALLOY K4169 UNDER PULSED MAGNETIC FIELD[J]. 金属学报, 2015, 51(7): 844-852.
No Suggested Reading articles found!