Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (2): 229-237    DOI: 10.11900/0412.1961.2018.00293
Orginal Article Current Issue | Archive | Adv Search |
Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy
Yimin LIAO1, Min FENG1, Minghui CHEN1(), Zhe GENG2, Yang LIU3, Fuhui WANG1, Shenglong ZHU3
1 Shenyang National Key Laboratory for Materials Science, Northeasten University, Shenyang 110819, China
2 Department of Precision Manufacturing Engineering, Suzhou Institute of Industrial Technology, Suzhou 215104, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy. Acta Metall Sin, 2019, 55(2): 229-237.

Download:  HTML  PDF(6448KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiAl intermetallic alloys have attracted great attention for its potential application in preparing low pressure turbine blades in aircraft engine. However, its poor oxidation and corrosion resistance becomes a challenge at temperatures above 800 ℃, which leads to the developing of protective coatings. Enamel coating is considered as one of the candidates that match the TiAl alloy well, meanwhile provide corrosion protection. Enamel coating has many advantages such as high thermochemical stability, adjustable thermal expansion coefficient and simple preparation process. This study comparatively investigates hot corrosion behavior of the Ti-45Al-2Mn-2Nb alloy, the traditional NiCrAlY coating and the enamel based composite coating in (75%Na2SO4+25%NaCl, mass fraction) melted salt. Results indicate that after 80 h of hot corrosion, the bare alloy has completely destroyed. For the NiCrAlY coating, it protects the underlying alloy well by forming a protective Al2O3 scale initially. However, serious interdiffusion between coating and substrate results in the degeneration of the coating as well as the scale. At the same time, the basic dissolution of Al2O3 film accelerates corrosion. So obvious spallation takes place after 60 h corrosion. The enamel based composite coating shows excellent thermal stability and low corrosion rate. During the whole hot corrosion test, it still retains its original blue glazing color and luster. Furthermore, the enamel coating suppresses the inward diffusion of oxygen and corrosive ions into the alloy substrate, and thus, it protects the TiAl alloy well from corrosion of the molten (75%Na2SO4+25%NaCl, mass fraction) salt.

Key words:  enamel coating      hot corrosion      NiCrAlY coating      TiAl alloy     
Received:  01 July 2018     
ZTFLH:  TG174.4  
Fund: Supported by National Natural Science Foundation of China (Nos.51471177 and 51871051), Fundamental Research Funds for the Central Universities (No.N160205001), Natural Science Foundation of Jiangsu Province of China (No.BK20160353) and Natural Science Foundation of Jiangsu Higher Education Institutions (No.16KJB460032)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00293     OR     https://www.ams.org.cn/EN/Y2019/V55/I2/229

Fig.1  Hot corrosion kinetics curves of TiAl alloy, NiCrAlY coating and the enamel based composite coating at 850 ℃
Fig.2  Macrographs of bare TiAl alloy (a), NiCrAlY coating (b) and the enamel based composite coating (c) after hot corrosion at 850 ℃ for different time
Fig.3  Hot corrosion kinetics curve of the enamel based composite coating at 850 ℃
Fig.4  XRD spectra of TiAl alloy (a), NiCrAlY coating (b) and the enamel based composite coating (c) before (as fired) and after hot corrosion at 850 ℃
Fig.5  Low (a, c, e) and high (b, d, f) magnified surface morphologies of bare TiAl alloy (a, b), NiCrAlY coating (c, d) and the enamel based composite coating (e, f) respectively after hot corrosion 80 h (a, b) and 180 h (c~f) at 850 ℃ (Insets show the amplified characteristic regions)
Position O Al Si Ti Mn Nb
a 16.65 3.31 28.74 48.01 2.93 0.36
b 62.66 26.32 2.82 7.95 0.25 -
Table 1  EDS analyses of positions a and b in Fig.6f
Fig.6  Low (a, c, e) and high (b, d, f) magnified cross-sectional morphologies of bare TiAl alloy (a, b), NiCrAlY coating (c, d) and the enamel based composite coating (e, f) respectively after hot corrosion 80 h (a, b) and 180 h (c~f) at 850 ℃
Fig.7  Element depth profiles (analyzed by EDS) of TiAl alloy with NiCrAlY coating (a) and the enamel based composite coating (b) after hot corrosion at 850 ℃ for 180 h
[1] Kim Y W.Ordered intermetallic alloys, Part III: Gamma titanium aluminides[J]. JOM, 1994, 46(7): 30
[2] Kim K W.Gamma titanium aluminides: Their status and future[J]. JOM, 1995, 47(7): 39
[3] Appel F, Brossmann U, Christoph U, et al.Recent progress in the development of gamma titanium aluminide alloys[J]. Adv. Eng. Mater., 2000, 2: 699
[4] Umakoshi Y, Yamaguchi M, Sakagami T, et al.Oxidation resistance of intermetallic compounds Al3Ti and TiAl[J]. J. Mater. Sci., 1989, 24: 1599
[5] Maki K, Shioda M, Sayashi M, et al.Effect of silicon and niobium on oxidation resistance of TiAl intermetallics[J]. Mater. Sci. Eng., 1992, A153: 591
[6] Yoshihara M, Kim Y W.Oxidation behavior of gamma alloys designed for high temperature applications[J]. Intermetallics, 2005, 13: 952
[7] Li W B.In situ preparation and high temperature corrosion behavior of glass-ceramic composite coating [D]. Shenyang: University of Chinese Academy of Sciences, 2014(李文波. 玻璃陶瓷复合涂层的原位制备方法及高温腐蚀行为研究 [D]. 沈阳: 中国科学院大学, 2014)
[8] Chinese Materials Research Society. Chinese New Material Industry Development Report—Aerospace Materials Album [M]. Beijing: Chemical Industry Press, 2006: 121(中国材料研究学会. 中国新材料产业发展报告——航空航天材料专辑 [M]. 北京: 化学工业出版社, 2006: 121)
[9] Tang Z L, Niewolak L, Shemet V, et al.Development of oxidation resistant coatings for γ-TiAl based alloys[J]. Mater. Sci. Eng., 2002, A328: 297
[10] Chu M S, Wu S K.The improvement of high temperature oxidation of Ti-50Al by sputtering Al film and subsequent interdiffusion treatment[J]. Acta Mater., 2003, 51: 3109
[11] Xiong H P, Xie Y H, Mao W, et al.Improvement in the oxidation resistance of the TiAl-based alloy by liquid-phase siliconizing[J]. Scr. Mater., 2003, 49: 1117
[12] Liang W, Zhao X G.Improving the oxidation resistance of TiAl-based alloy by siliconizing[J]. Scr. Mater., 2001, 44: 1049
[13] Taniguchi S, Shibata T, Asanuma N, et al.Oxidation behavior of TiAl coated with a fine-grain Co-30Cr-4Al film[J]. Oxid. Met., 1993, 39: 457
[14] Tang Z L, Wang F H, Wu W T.Effect of MCrAIY overlay coatings on oxidation resistance of TiAl intermetallics[J]. Surf. Coat. Technol., 1998, 99: 248
[15] Tang Z L, Wang F H, Wu W T.The effects of several coatings on cyclic oxidation resistance of TiAl intermetallics[J]. Surf. Coat. Technol., 1998, 110: 57
[16] Zhang X J, Li Q, Zhao S Y, et al.Improvement in the oxidation resistance of a γ-TiAl-based alloy by sol-gel derived Al2O3 film[J]. Appl. Surf. Sci., 2008, 255: 1860
[17] Tang Z L, Wang F H, Wu W T.Hot-corrosion behavior of TiAl-base intermetallics in molten salts[J]. Oxid. Met., 1999, 51: 235
[18] Tang Z L, Wang F H, Wu W T.Effect of a sputtered TiAlCr coating on hot corrosion resistance of gamma-TiAl[J]. Intermetallics, 1999, 7: 1271
[19] Bacos M P, Thomas M, Raviart J L, et al.Influence of an oxidation protective coating upon hot corrosion and mechanical behaviour of Ti-48Al-2Cr-2Nb alloy[J]. Intermetallics, 2011, 19: 1120
[20] Bacos M P, Morel A, Naveos S, et al.The effect of long term exposure in oxidising and corroding environments on the tensile properties of two gamma-TiAl alloys[J]. Intermetallics, 2006, 14: 102
[21] Zhang K, Gao W, Liang Z.Molten salt vapour corrosion of Ti-Al-Ag intermetallics[J]. Intermetallics, 2004, 12: 539
[22] Feng M, Chen M H, Yu Z D, et al.Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings[J]. Acta Metall. Sin., 2017, 53: 1636(丰敏, 陈明辉, 余中狄等. 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究[J]. 金属学报, 2017, 53: 1636)
[23] Tang Z L, Wang F H.Effect of enamel coating on the oxidation resistance and hot corrosion resistance of TiAl intermatallics [A]. Proceedings of the National Symposium on Surface and Interface Science and Engineering of Materials at 1998[C]. Mount Huangshan: China Society of Metals, Chinese Society of Mechanical Engineering, 1998: 108(唐兆麟, 王福会. 搪瓷涂层对TiAl金属间化合物抗氧化、热腐蚀性能的影响 [A]. '98全国材料表面与界面的科学与工程研讨会论文摘要集[C]. 黄山: 中国金属学会, 中国机械工程学会,1998: 108)
[24] Xiong Y M, Zhu S L, Wang F H, et al.Effect of alloying elements and enamel coating on the oxidation behavior of Ti3Al[J]. Acta Metall. Sin., 2002, 38(Suppl.1): 626(熊玉明, 朱圣龙, 王福会等. 合金元素及搪瓷涂层对Ti3Al系列合金抗氧化性能的影响[J]. 金属学报, 2002, 38(增刊): 626)
[25] Chen M H, Zhu S L, Wang F H.Crystallization behavior of SiO2-Al2O3-ZnO-CaO glass system at 1123-1273 K[J]. J. Am. Ceram. Soc., 2010, 93: 3230
[26] Li T F.High Temperature Oxidation and Thermal Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 262(李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 262)
[27] Felix P.Deposition and Corrosion in Gas Turbines[M]. London: Appl. Sci. Pub., 1972: 331
[28] Shao G X.Enamel [M]. Beijing: China Light Industry Press, 1983: 360(邵规贤. 搪瓷学[M]. 北京: 轻工业出版社, 1983: 360)
[29] Chen M H, Zhu S L, Wang F H.Strengthening mechanisms and fracture surface characteristics of silicate glass matrix composites with inclusion of alumina particles of different particle sizes[J]. Physica, 2013, 413B: 15
[30] Tatar C, ?zdemir N.Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method[J]. Physica, 2010, 405B: 896
[31] Xu Y K, Xu J.Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites[J]. Scr. Mater., 2004, 49: 843
[32] Wei Y, Hu S B, Zhou Y F, et al.Preparation and hot corrosion resistance of composite enamel coatings on Cr25Ni20Si2 alloy[J]. Trans. Mater. Heat Treat., 2009, 30(1): 174(魏燕, 胡树兵, 周永峰等. Cr25Ni20Si2合金表面复合搪瓷涂层的抗热腐蚀研究[J]. 材料热处理学报, 2009, 30(1): 174)
[33] Schaeffer H A .Oxygenand silicon diffusion-controlled processes in vitreous silica [J].J. Non-Cryst. Solids, 1980, 38-39: 545
[34] Schaeffer H A.Diffusion-controlled processes in glass forming melts[J]. J. Non-Cryst. Solids, 1984, 67: 19
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[3] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[4] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[5] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[6] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[7] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[8] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[9] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[10] GAO Bo, WANG Lei, SONG Xiu, LIU Yang, YANG Shuyu, CHIBA Akihiko. Effect of Pre-Oxidation on High Temperature Oxidation and Corrosion Behavior of Co-Al-W-Based Superalloy[J]. 金属学报, 2019, 55(10): 1273-1281.
[11] Chengyang JIANG, Yingfei YANG, Zhengyi ZHANG, Zebin BAO, Shenglong ZHU, Fuhui WANG. Preparation and Enhanced Hot Corrosion Resistance of aZr-Doped PtAl2+(Ni, Pt)Al Dual-Phase Coating[J]. 金属学报, 2018, 54(4): 581-590.
[12] Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys[J]. 金属学报, 2018, 54(1): 93-99.
[13] Tianrui LI, Guohuai LIU, Mang XU, Hongzhi NIU, Tianliang FU, Zhaodong WANG, Guodong WANG. Microstructures and High Temperature Tensile Properties of Ti-43Al-4Nb-1.5Mo Alloy in the Canned Forging andHeat Treatment Process[J]. 金属学报, 2017, 53(9): 1055-1064.
[14] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[15] Min FENG, Minghui CHEN, Zhongdi YU, Zhenbo LV, Shenglong ZHU, Fuhui WANG. Comparative Study of Thermal Shock Behavior of the Arc Ion Plating NiCrAlY and the Enamel Based Composite Coatings[J]. 金属学报, 2017, 53(12): 1636-1644.
No Suggested Reading articles found!