Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (12): 1809-1817    DOI: 10.11900/0412.1961.2018.00124
Orginal Article Current Issue | Archive | Adv Search |
Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension
Jialin LIU1,2, Yumin WANG1(), Guoxing ZHANG1, Xu ZHANG1, Lina YANG1, Qing YANG1, Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension. Acta Metall Sin, 2018, 54(12): 1809-1817.

Download:  HTML  PDF(5177KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Transverse mechanical properties of titanium matrix composites (TMCs) play an important role during its engineering service. Although SiCf / TC17 composite is one of the most promising TMC candidates for aeroengine, as we know its transverse properties have not been reported yet until now. In this work, the transverse strength of single SiC fiber reinforced TC17 composite was evaluated using cruciform specimen. The surface and cross-section of fractured specimen were investigated by SEM to determine the failure position during tensile test. Finite element simulation method was also used to analyze the mechanism of interfacial failure and crack propagation. During the transverse tensile test of single fiber specimen, the initial non-linearity in the stress-strain curve occurred at the stress of (271±12) MPa, which indicated the beginning of fiber-matrix interface failure. SEM observation showed that the crack in the center of sample appeared at the interface of reaction layer and carbon coating with a 24°~68° angle to the applied loading direction and its length extended with the increase of the applied stress. The finite element simulation results based on bilinear cohesive element model showed that transverse fracture of composite interface was shear failure mode, which agreed well with the test results. Before the occurrence of non-linearity in the stress-strain curve, the crack initiated at the circular interface between reaction layer and carbon coating with a 40°~50° angle to the applied loading direction. Crack initiation locations in test samples were different with those in simulation samples, because the actual composite interface was rough and some micro-flaws formed in the interface, whereas it was assumed to be an ideal rigid interface for simulation. Then the crack propagated along both circumferential and axial directions because of the shear stress. With the crack growing, the interface close to 0°angle to the applied loading direction failed first caused by the radial tensile stress, whereas the interface near 90° failed later as a result of circumferential shear stress. After complete failure of the interface, stress redistribution occurred around the SiC fiber and the interface separation increased with the increasing of the applied load, which gave rise to the yielding and deforming of the matrix near fiber until the final fracture of the composite.

Key words:  SiC fiber      titanium matrix composite      interfacial shear strength      transverse strength      finite element simulation     
Received:  03 April 2018     
ZTFLH:  TG146.23  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00124     OR     https://www.ams.org.cn/EN/Y2018/V54/I12/1809

Fig.1  Schematic of single fiber cruciform specimen (unit: mm)
Fig.2  Typical tensile stress-strain curve of single fiber cruciform specimen under transverse loading
Fig.3  Interfacial debonding of cruciform specimen under a maximum tensile stress of 606 MPa (F—tensile stress)
Fig.4  Overall morphology (a) and enlarged region (b) of interfacial debonding of cruciform specimen under a maximum tensile stress of 470 MPa
Fig.5  Interfacial debonding of cruciform specimen under the maximum tensile stresses of 230 MPa (a) and 250 MPa (b)
Fig.6  Finite element model and meshing
Material Young's Poisson Thermal Yield
modulus ratio expansion stress
GPa coefficient MPa
(23 ℃, 10-6 -1)
SiC 400 0.3 4.0 3800
TC17 118 0.3 10.8 600
Table 1  Typical properties of single SiC fiber and TC17 alloy
Fig.7  Bilinear cohesive element model (Dn—scalar stiffness degradation; Nmax—maximum nominal stress; N—nominal stress; δninit—displacement at damage initiation in normal (opening) mode; δnfail—displacement at failure in normal (opening) mode; δn—displacement in normal (opening) mode; Kn—penalty stiffness)
Fig.8  Circular profiles of circumferential shear stress (a) and radial interfacial stress (b) under different applied loads
Fig.9  Interfacial crack initiation and propagation processes simulated by finite element model (red regions are failure units)
(a) crack initiation under 231 MPa (b) crack propagating under 263 MPa(c) crack propagates to 0° under 270 MPa (d) crack propagates to 90° under 282 MPa
Fig.10  Circular profiles of circumferential shear stress (a) and radial interfacial stress (b) during interfacial crack propagation
Fig.11  Contour of local matrix equivalent plastic strain failed at 0° (a) and 90° (b) (PEEQ—equivalent plastic strain)
Fig.12  Schematic of interfacial crack initiation and propagation under transverse loading (σa—far field loading)
[1] Johnson A, Wright P.Application of advanced materials to aircraft gas turbine engines [A]. 26th Joint Propulsion Conference[C]. Orlando: American Institute of Aeronautics and Astronautics, 1990: 2281
[2] Wang Y M, Zhang G X, Zhang X, et al.Advances in SiC fiber reinforced titanium matrix composites[J]. Acta Metall. Sin., 2016, 52: 1153(王玉敏, 张国兴, 张旭等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016, 52: 1153)
[3] Hyde T H, Punyong K, Becker A A.Elasto-plastic finite element analysis of titanium metal matrix composite shafts under torsional loading[J]. J. Strain Anal. Eng. Des., 2015, 50: 199
[4] Leyens C, Kocian F, Hausmann J, et al.Materials and design concepts for high performance compressor components[J]. Aerosp. Sci. Technol., 2003, 7: 201
[5] Carrere N, Feyel F, Kruch S.Multi-scale modelling of silicon carbide reinforced titanium MMCs: Application to advanced compressor design[J]. Aerosp. Sci. Technol., 2003, 7: 307
[6] Aghdam M M, Pavier M J, Smith D J.Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis[J]. Int. J. Solids Struct., 2001, 38: 3905
[7] Ismar H, Schr?ter F, Streicher F.Effects of interfacial debonding on the transverse loading behaviour of continuous fibre-reinforced metal matrix composites[J]. Comput. Struct., 2001, 79: 1713
[8] Hu S F.The transverse failure of a single-fiber metal-matrix composite: Experiment and modeling[J]. Compos. Sci. Technol., 1996, 56: 667
[9] Dong M, Schmauder S.Transverse mechanical behaviour of fiber reinforced composites-FE modelling with embedded cell models[J]. Comput. Mater. Sci., 1996, 5: 53
[10] Li D S, Wisnom M R.Factors controlling the transverse tensile properties of unidirectional SiC/Ti-6AI-4V[J]. Compos. Eng., 1995, 5: 235
[11] Gundel D B, Miracle D B.The influence of interface structure and composition on the response of single-fiber SiC/Ti-6Al-4V composites to transverse tension[J]. Appl. Compos. Mater., 1998, 5: 95
[12] Gundel D B, Warrier S G, Miracle D B.The interface debond stress in single and multiple SiC fiber/Ti-6Al-4V composites under transverse tension[J]. Acta Mater., 1997, 45: 1275
[13] Warrier S G, Gundel D B, Majumdar B S, et al.Stress distribution in a transversely loaded cross-shaped single fiber SCS-6/Ti-6Al-4V composite[J]. Scr. Mater., 1996, 34: 293
[14] Akser E O, Choy K L.Finite element analysis of the stress distribution in a thermally and transversely loaded Ti-6Al-4V/SiC fibre composite[J]. Compos. Part. Appl. Sci. Manufactur., 2001, 32A: 243
[15] Warrier S G, Majumdar B S, Gundel D B, et al.Implications of tangential shear stress induced failure during transverse loading of SiCTi-6Al-4V composites[J]. Acta Mater., 1997, 45: 3469
[16] Gundel D B, Warrier S G, Miracle D B.The transverse tensile behavior of SiC-fiber/Ti-6Al-4V composites 2. Stress distribution and interface failure[J]. Compos. Sci. Technol., 1999, 59: 1087
[17] Gundel D B, Miracle D B.Transverse tensile behavior of SiC-fiber/Ti-6Al-4V composites—1. Experimental results[J]. Compos. Sci. Technol., 1998, 58: 1571
[18] Lou J H, Yang Y Q, Luo X, et al.Effects of fiber volume fraction on transverse tensile properties of SiC/Ti-6Al-4V composites[J]. Rare Met. Mater. Eng., 2011, 40: 575
[19] De Kok J M M, Meijer H E H. Deformation, yield and fracture of unidirectional composites in transverse loading: 1. Influence of fibre volume fraction and test-temperature[J]. Composites, 1999, 30A: 905
[20] Lou J H, Yang Y Q, Luo X, et al.The analysis on transverse tensile behavior of SiC/Ti-6Al-4V composites by finite element method[J]. Mater. Des., 2010, 31: 3949
[21] John R, Buchanan D J, Larsen J M.Prediction of transverse fatigue behavior of unidirectionally reinforced metal matrix composites[J]. Scr. Mater., 1998, 39: 1529
[22] Carrere N, Valle R, Bretheau T, et al.Multiscale analysis of the transverse properties of Ti-based matrix composites reinforced by SiC fibres: From the grain scale to the macroscopic scale[J]. Int. J. Plast., 2004, 20: 783
[23] Collings E W, Welsch G.Materials Properties Handbook: Titanium Alloys[M]. Materials Park, OH, USA: ASM International, 1994: 453
[24] Zhao C B, Wang Y M, Zhang G X, et al.Effect of heat treatment on the microstructure and properties of CVD SiC fiber[J]. J. Mater. Sci. Technol., 2017, 33: 1378
[25] Zhang X, Wang Y M, Lei J F, et al.The interfacial thermal stability and element diffusion mechanism of SiCf/TC17 composite[J]. Acta Metall. Sin., 2012, 48: 1306(张旭, 王玉敏, 雷家峰等. SiCf/TC17复合材料界面热稳定性及元素扩散机理[J]. 金属学报, 2012, 48: 1306)
[26] Zhang X, Wang Y M, Yang Q, et al.Study on tensile behavior of SiCf/TC17 composites[J]. Acta Metall. Sin., 2015, 51: 1025(张旭, 王玉敏, 杨青等. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51: 1025)
[27] Liu P F, Li X K.Explicit finite element analysis of failure behaviors of thermoplastic composites under transverse tension and shear[J]. Compos. Struct., 2018, 192: 131
[28] Chandra N, Li H, Shet C, et al.Some issues in the application of cohesive zone models for metal-ceramic interfaces[J]. Int. J. Solids Struct., 2002, 39: 2827
[29] Zhang X.Study on interface reaction, residual stress and mechanical properties of SiCf/TC17 composite [D]. Shenyang: Institute of Metal Research, 2013(张旭. SiCf/TC17复合材料界面反应、残余应力及力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[30] Timoshenko S P, Goodier J N.Theory of Elasticity[M]. 3rd Ed., New York: McGraw-Hill Book Company, 1970: 18
[31] Li K J, Yang Y Q, Luo X, et al.Transverse mechanical properties of continuous SiC fiber reinforced titanium matrix composites[J]. Rare Met. Mater. Eng., 2009, 38: 426
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[3] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[4] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[5] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[6] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[7] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[8] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[9] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[10] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[11] Yumin WANG, Guoxing ZHANG, Xu ZHANG, Qing YANG, Lina YANG, Rui YANG. ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES[J]. 金属学报, 2016, 52(10): 1153-1170.
[12] Xu ZHANG, Yumin WANG, Qing YANG, Jiafeng LEI, Rui YANG. STUDY ON TENSILE BEHAVIOR OF SiCf/TC17 COMPOSITES[J]. 金属学报, 2015, 51(9): 1025-1037.
[13] FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[14] LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. 金属学报, 2013, 49(6): 641-648.
[15] XU Jiayu CHEN Hongtao LI Mingyu. STUDY ON LEAD-FREE SOLDER JOINT RELIABILITY BASED ON GRAIN ORIENTATION[J]. 金属学报, 2012, 48(9): 1042-1048.
No Suggested Reading articles found!