Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 193-203    DOI: 10.11900/0412.1961.2017.00428
Orginal Article Current Issue | Archive | Adv Search |
Progress and Application of Microstructure Simulation of Alloy Solidification
Tongmin WANG1,2, Jingjing WEI1,2, Xudong WANG1,2(), Man YAO1,2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), Dalian University of Technology, Dalian 116024, China
Cite this article: 

Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification. Acta Metall Sin, 2018, 54(2): 193-203.

Download:  HTML  PDF(3126KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Solidification structures are the interaction links between the alloy components and their mechanical properties. Scientifically comprehending about the formation mechanisms, dominant factors and control methods in alloy solidification has a significant effect on the structure control and optimization. Dendritic structure is the most frequently observed solidification microstructure of alloys and controlled by heat, solute, melt flow, capillary and many other factors. Modelling and simulating can accurately quantify various phenomena and evolution rules in the process of solidification, thus play an increasingly important role in the design, preparation, processing and performance optimization of alloy materials. Over the past two decades, remarkable progress has been made and various models have been proposed in microstructure simulation during alloy solidification process, such as deterministic method, phase field (PF), Monte Carlo (MC) and cellular automaton (CA). With the advantages of clear physical meaning, easily programming and high calculation efficiency, CA method has been widely applied in the study of solidification structure simulation and exhibits great advantages. Considering the current development level of computer hardware, numerical model and calculation method, microstructure simulation of large components mainly adopts macro-microscopic coupling calculation method, such as CA-FD/FE model. The heat transfer and other multi-physical fields are calculated at the level of coarse mesh, where as nucleation and dendritic growth are simulated at a much finer grid level. This paper reviews the main models and development of CA method used for nucleation simulation. The key aspects in the simulation of dendritic growth including mean solid-interface interface curvature, growth kinetics and the algorithm for eliminating “pseudo anisotropy” are discussed. Based on this, the development and application status of macro-micro coupling model during casting, directional solidification and other manufacturing fields are summarized. Finally, the existing problems and future tendency for simulation of solidification structures are analyzed.

Key words:  alloy solidification      nucleation      dendritic growth      cellular automaton      structure simulation     
Received:  16 October 2017     
Fund: Supported by National Natural Science Foundation of China (No.51474047)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00428     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/193

Fig.1  Length scales in simulation of solidification structure (CA—cellular automaton, CET—columnar to equiaxed transition, SDAS—secondary dendritic arm spacing)
Fig.2  Relationship among grain density, nucleation distribution and cooling curve (t—time; TL—liquidus temperature; ΔT, ΔT1 and ΔT2—undercooling; ΔTN and ΔTσ—mean nucleation undercooling and standard deviation of undercooling of Gaussian distribution; N1andN2—grain density; Nmax—maximum density of nuclei)
Fig.3  Dendrite morphologies using different neighborhood configurations
(a) Von Neumann (b) Moore
Fig.4  Modified decentered square algorithm
Fig.5  Simulated dendritic morphologies with different preferred growth orientation (C—solute concentration)
Fig.6  Simulated solidification microstructure of 1/4 billet using CAFE model
[1] Xu Q Y, Xiong S M, Liu B C.Advances in microstructure simulation of casting alloy[J]. Mater. Rev., 2002, 16(1): 11(许庆彦, 熊守美, 柳百成. 铸造合金的微观组织模拟研究进展[J]. 材料导报, 2002, 16(1): 11)
[2] Oldfield W.A quantitative approach to casting solidification: Freezing of cast iron[J]. ASM Trans., 1966, 59: 945
[3] Hunt J D.Steady-state columnar and equiaxed growth of dendrites and eutectic[J]. Mater. Sci. Eng., 1984, 65: 75
[4] Thevoz P, Desbiolles J L, Rappaz M.Modeling of equiaxed microstructure formation in casting[J]. Metall. Mater. Trans., 1989, 20A: 311
[5] Natsume Y, Ohsasa K.Prediction of casting structure in aluminum-base multi-component alloys using heterogeneous nucleation parameter[J]. ISIJ Int., 2006, 46: 896
[6] Huang F.Numerical simulation of microstructure evolution during solidification of twin-roll casting process [D]. Shenyang: Northeastern University, 2015(黄锋. 薄带双辊铸轧凝固过程组织演变的数值模拟 [D]. 沈阳: 东北大学, 2015)
[7] Wang T M.Research on the micro-modelling of metal solidification process [D]. Dalian: Dalian University of Technology, 2000(王同敏. 金属凝固过程微观模拟研究 [D]. 大连: 大连理工大学, 2000)
[8] Song Y D.Microstructure simulation of magnesium alloy [D]. Dalian: Dalian University of Technology, 2012(宋迎德. 镁合金凝固组织模拟 [D]. 大连: 大连理工大学, 2012)
[9] Wu S P, Liu D R, Guo J J, et al.Numerical simulation of microstructure evolution of Ti-6Al-4V alloy in vertical centrifugal casting[J]. Mater. Sci. Eng., 2006, A426: 240
[10] Lipton J, Glicksman M E, Kurz W.Dendritic growth into under cooled alloy[J]. Mater. Sci. Eng., 1984, 65: 57
[11] Kurz W, Giovanola B, Trivedi R.Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823
[12] Trivedi R, Magnin P, Kurz W.Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971
[13] Wang C Y, Beckermann C.A multiphase solute diffusion-model for dendritic alloy solidification[J]. Metall. Trans., 1993, 24A: 2787
[14] Wang C Y, Ahuja S, Beckermann C, et al.Multiparticle interfacial drag in equiaxed solidification[J]. Metall. Mater. Trans., 1995, 26B: 111
[15] Wang C Y, Beckermann C.Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J]. Metall. Mater. Trans., 1994, 25A: 1081
[16] Yu Y M, Lv Y L, Zhang Z Z, et al.Progress in numerical simulation of solidification microstructure using phase-field method[J]. Foundry, 2000, 49: 507(于艳梅, 吕衣礼, 张振忠等. 相场法凝固组织模拟的研究进展[J]. 铸造, 2000, 49: 507)
[17] Kobayashi R.Modeling and numerical simulations of dendritic crystal growth[J]. Physica, 1993, 63D: 410
[18] Boettinger W J.The solidification of multicomponent alloys[J]. J. Phase Equilib. Diffus., 2016, 37: 4
[19] T?nhardt R, Amberg G.Phase-field simulation of dendritic growth in a shear flow[J]. J. Cryst. Growth, 1998, 194: 406
[20] Karma A, Rappel W J.Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]. Phys. Rev., 1998, 57E: 4323
[21] Yin Y J, Zhou J X, Liao D M, et al.Phase-field simulation of dendritic solidification using a full threaded tree with adaptive meshing[J]. China Foundry, 2014, 11: 493
[22] Anderson M P, Srolovitz D J, Grest G S, et al.Computer simulation of grain growth—I. Kinetics[J]. Acta Metall., 1984, 32: 783
[23] Srolovitz D J, Anderson M P, Sahni P S, et al.Computer simulation of grain growth—II. Grain size distribution, topology, and local dynamics[J]. Acta Metall., 1984, 32: 793
[24] Zhang J X, Guan X J, Sun S.A modified Monte Carlo method in grain growth simulation[J]. Acta. Metall. Sin., 2004, 40: 457(张继祥, 关小军, 孙胜. 一种改进的晶粒长大Monte Carlo模拟方法[J]. 金属学报, 2004, 40: 457)
[25] Spittle J A, Brown S.Computer-simulation of the effects of alloy variables on the grain structures of castings[J]. Acta Metall., 1989, 37: 1803
[26] Beltran-Sanchez L, Stefanescu D M.Growth of solutal dendrites-A cellular automaton model[J]. Int. J. Cast Met. Res., 2002, 15: 251
[27] Sasikumar R, Sreenivasan R.Two dimensional simulation of dendrite morphology[J]. Acta Metall. Mater., 1994, 42: 2381
[28] Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253
[29] Beltran-Sanchez L, Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J]. Metall. Mater. Trans., 2004, 35A: 2471
[30] Gandin C A, Rappaz M.A coupled finite-element cellular-automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233
[31] Gandin C A, Desbiolles J L, Rappaz M, et al.A three-dimensional cellular automaton-finite element model for the prediction of soli-dification grain structures[J]. Metall. Mater. Trans., 1999, 30A: 3153
[32] Rappaz M, Gandin C A.Probabilistic modeling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345
[33] Zhu F M, Tang Q Y, Zhang Q Y, et al.Cellular automaton modeling of micro-structure evolution during alloy solidification[J]. Acta Metall. Sin., 2016, 52: 1297(朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟[J]. 金属学报, 2016, 52: 1297)
[34] Pang R P, Wang F M, Zhang G Q, et al.Study of solidification thermal parameters of 430 ferrite stainless steel based on 3D-CAFE method[J]. Acta Metall. Sin., 2013, 49: 1234(庞瑞朋, 王福明, 张国庆等. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49: 1234)
[35] Zhang P, Hou H, Zhao Y H, et al.Microstructure simulation during directional solidification of nickel-based alloy based on CAFE model[J]. Trans. Nonferrous Met. Soc., 2016, 26: 782(张璞, 侯华, 赵宇宏等. 基于CAFE模型的镍基合金定向凝固过程显微组织模拟[J]. 中国有色金属学报, 2016, 26: 782)
[36] Lan P, Sun H B, Li Y, et al.3D CAFE model for simulating the solidification microstructure of 430 stainless steel[J]. J. Univ. Sci. Technol., 2014, 36: 315(兰鹏, 孙海波, 李阳等. 430不锈钢凝固显微组织模拟的3DCAFE模型[J]. 北京科技大学学报, 2014, 36: 315)
[37] Luo S, Zhu M Y, Louhenkilpi S.Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method[J]. ISIJ Int., 2012, 52: 823
[38] Wang W L, Luo S, Zhu M Y.Numerical simulation of dendritic growth of continuously cast high carbon steel[J]. Metall. Mater. Trans., 2015, 46A: 396
[39] Zhang X F, Zhao J Z, Jiang H X, et al.A three-dimensional cellular automaton model for dendritic growth in multi-component alloys[J]. Acta Mater., 2012, 60: 2249
[40] Zhu M F, Stefanescu D.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J]. Acta Mater., 2007, 55: 1741
[41] Wei L, Lin X, Wang M, et al.A cellular automaton model for the solidification of a pure substance[J]. Appl. Phys., 2011, 103A: 123
[42] Xu Q Y, Feng W M, Liu B C, et al.Numerical simulation of dendrite growth of aluminum alloy[J]. Acta Metall. Sin., 2002, 38: 799(许庆彦, 冯伟明, 柳百成等. 铝合金枝晶生长的数值模拟[J]. 金属学报, 2002, 38: 799)
[43] Fu Z N, Xu Q Y, Xiong S M.Numerical simulation on dendrite growth process of Mg alloy using cellular automaton method based on probability capturing model[J]. Chin. J. Nonferrous Met. Soc., 2007, 17: 1567(付振南, 许庆彦, 熊守美. 基于概率捕获模型的元胞自动机方法模拟镁合金枝晶生长过程[J]. 中国有色金属学报, 2007, 17: 1567)
[44] Wang W, Lee P D, Mclean M.A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection[J]. Acta Mater., 2003, 51: 2971
[45] Nakagawa M, Natsume Y, Ohsasa K.Dendrite growth model using front tracking technique with new growth algorithm[J]. ISIJ Int., 2006, 46: 909
[46] Chen R, Xu Q Y, Liu B C.A modified cellular automaton model for the quantitative prediction of equiaxed and columnar dendritic growth[J]. J. Mater. Sci. Technol., 2014, 30: 1311
[47] Yin H, Felicelli S D.Dendrite growth simulation during solidification in the LENS process[J]. Acta Mater., 2010, 58: 1455
[48] Yu J, Xu Q Y, Cui K, et al.Numerical simulation of microstructure evolution based on a modified CA method[J]. Acta Metall. Sin., 2007, 43: 731(于靖, 许庆彦, 崔锴等. 基于一种改进CA模型的微观组织模拟[J]. 金属学报, 2007, 43: 731)
[49] Zhan X H, Wei Y H, Dong Z B.Cellular automaton simulation of grain growth with different orientation angles during solidification process[J]. J. Mater. Process. Technol., 2008, 208: 1
[50] Shin Y H, Hong C P.Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface[J]. ISIJ Int., 2002, 42: 359
[51] Zhu M F, Lee S Y, Hong C P.Modified cellular automaton model for the prediction of dendritic growth with melt convection.[J]. Phys. Rev., 2004, 69E: 61610
[52] Jacot A, Rappaz M.A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys[J]. Acta Mater., 2002, 50: 1909
[53] Wei L, Lin X, Wang M, et al.Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model[J]. Physica, 2012, 407B: 2471
[54] Wei L, Lin X, Wang M, et al.Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification[J]. Mater. Discov., 2016, 3: 17
[55] Akagiri T, Natsume Y, Ohsasa K, et al.Evaluation of crystal multiplication at mold wall during solidification of casting[J]. ISIJ Int., 2008, 48: 355
[56] Hou Z B, Jiang F, Cheng G G.Solidification structure and compactness degree of central equiaxed grain zone in continuous casting billet using cellular automaton-finite element method[J]. ISIJ Int., 2012, 52: 1301
[57] Tsai D C, Hwang W S.Numerical simulation of solidification morphologies of Cu-0.6Cr casting alloy using modified cellular automaton model[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1072
[58] Tsai D C, Hsu M S, Hwang W S, et al.Mathematical modeling of solidification microstructure of pure copper by vacuum continuous casting and its experimental verification[J]. ISIJ Int., 2010, 50: 1843
[59] Luo S, Zhu M Y, Louhenkilpi S.Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method[J]. ISIJ Int., 2012, 52: 823
[60] Zhang H Q, Zhang J, Li Y F, et al.Stray grain formation in casting platform of third generation Ni-base single crystal superalloy[J]. China Foundry, 2014, 63: 128(张宏琦, 张军, 李亚峰等. 一种第三代镍基单晶高温合金铸件截面突变处的杂晶形成过程[J]. 铸造, 2014, 63: 128)
[61] Liu D R, Reinhart G, Mangelinck?Noel N, et al. Coupled cellular automaton (CA)-finite element (FE) modeling of directional solidification of Al-3.5wt% Ni alloy: A comparison with X-ray synchrotron observations[J]. ISIJ Int., 2014, 54: 392
[62] Wei L, Lin X, Wang M, et al.Cellular automaton simulation of the molten pool of laser solid forming process[J]. Acta Phys. Sin., 2015, 64: 018103(魏雷, 林鑫, 王猛等. 激光立体成形中熔池凝固微观组织的元胞自动机模拟[J]. 物理学报, 2015, 64: 018103)
[63] Chen S J, Guillemot G, Gandin C A.3D coupled cellular automaton (CA)-finite element (FE) modeling for solidification grain structures in gas tungsten arc welding (GTAW)[J]. ISIJ Int., 2014, 54: 401
[64] Chen S J, Guillemot G, Gandin C A.Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes[J]. Acta Mater., 2016, 115: 448
[65] Feng X H, Zhao F Z, Jia H M, et al.Numerical simulation of non-dendritic structure formation in Mg-Al alloy solidified with ultrasonic field[J]. Ultrason. Sonochem., 2018, 40: 113
[66] Liu Q L, Li X M, Jiang Y H.Microstructure evolution of large-scale titanium slab ingot based on CAFE method during EBCHM[J]. J. Mater. Res., 2017, 32: 3175
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[3] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[4] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[5] Juan DU, Xiaoxing CHENG, Tiannan YANG, Longqing CHEN, Frédéric Mompiou, Wenzheng ZHANG. In Situ TEM Study on the Sympathetic Nucleation of Austenite Precipitates[J]. 金属学报, 2019, 55(4): 511-520.
[6] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[7] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[8] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
[9] Jincheng WANG, Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG. Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. 金属学报, 2018, 54(2): 204-216.
[10] Lei WEI, Yongqing CAO, Haiou YANG, Xin LIN, Meng WANG, Weidong HUANG. Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed[J]. 金属学报, 2018, 54(12): 1801-1808.
[11] Zongyuan ZOU, Xiaokui XU, Yinxiao LI, Chao WANG. Study on the Method of Improving the Toughness of CGHAZ for High Heat Input Welding Steels[J]. 金属学报, 2017, 53(8): 957-967.
[12] Jin WANG, Yuefei ZHANG, Jinyao MA, Jixue LI, Ze ZHANG. Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test[J]. 金属学报, 2017, 53(12): 1627-1635.
[13] Yong YANG,Zhaodong WANG,Tianrui LI,Tao JIA,Xiaolin LI,Guodong WANG. A Model for Precipitation-Temperature-Time Curve Calculation[J]. 金属学报, 2017, 53(1): 123-128.
[14] Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION[J]. 金属学报, 2016, 52(10): 1297-1310.
[15] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
No Suggested Reading articles found!