|
|
Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding |
Chuansong WU( ), Hao SU, Lei SHI |
Key Laboratory for Liquid-Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061, China |
|
Cite this article:
Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding. Acta Metall Sin, 2018, 54(2): 265-277.
|
Abstract The heat generation, heat transfer and plasticized material flow in friction stir welding determine directly the microstructure evolution and mechanical properties of weld joints. Numerical simulation of these thermo-physical phenomena is of great significance for getting a deep insight into the underlying mechanisms and optimizing the process parameters of friction stir welding. This article reviews the progress status in numerical simulation of heat generation, heat transfer and plasticized material flow behaviors in friction stir welding, and outlines the unsolved problems. The research work targeting these issues, which has been conducted by the authors' group, is introduced. According to the stress characteristics at the tool-workpiece interface, the expressions of sticking rate and friction coefficient are developed, and this measurement-calculation method lays foundation for improving the accuracy of numerical analysis. Through synthetically considering the characteristics of complex-shaped tools, a three dimensional model of friction stir welding process is established. Three types of tools are taken into consideration, i.e., normal CT (conical-pin tool), ST (conical-pin with 4 flats tool) and TT (conical-pin with 3 flats tool). For the cases in application of these tools, the heat generation, temperature profile, and material flow velocity are analyzed quantitatively. A mathematical model for the whole friction stir welding process including plunge stage, dwell stage, welding stage, and cooling stage is established for numerical analysis of transient development in heat generation rate, temperature and material flow fields in each stages. Based on the status review, the trend in numerical simulation of frictions stir welding is outlooked, and the research focus for next step is proposed.
|
Received: 17 July 2017
|
Fund: Supported by National Natural Science Foundation of China (No.51475272) |
[1] | Dursun T, Soutis C.Recent developments in advanced aircraft aluminium alloys[J]. Mater. Des., 2014, 56: 862 | [2] | Mishra R S, De P S, Kumar N.Friction stir welding and processing[M]. New York: Springer, 2014: 11 | [3] | Wang G Q, Zhao Y H.Friction stir welding of aluminum alloys [M]. Beijing: China Astronautic Publishing House, 2010: 8(王国庆, 赵衍华. 铝合金的搅拌摩擦焊接 [M]. 北京: 中国宇航出版社, 2010: 8) | [4] | Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1 | [5] | Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction-stir welding-process, weldment structure and properties[J]. Prog. Mater. Sci., 2008, 53: 980 | [6] | He X C, Gu F S, Ball A.A review of numerical analysis of friction stir welding[J]. Prog. Mater. Sci., 2014, 65: 1 | [7] | Schmidt H, Hattel J, Wert J.An analytical model for the heat generation in friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2003, 12: 143 | [8] | Nandan R, Roy G G, Lienert T J, et al.Three-dimensional heat and material flow during friction stir welding of mild steel[J]. Acta Mater., 2007, 55: 883 | [9] | Shi L, Wu C S, Liu H J.Analysis of heat transfer and material flow in reverse dual-rotation friction stir welding[J]. Weld. World, 2015, 59: 629 | [10] | Chen G Q, Shi Q Y.Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. J. Mech. Eng., 2015, 51(22): 11(陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11) | [11] | Simar A, Bréchet Y, De Meester B, et al.Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties[J]. Prog. Mater. Sci., 2012, 57: 95 | [12] | Chen G Q, Shi Q Y, Fujiya Y, et al.Simulation of metal flow during friction stir welding based on the model of interactive force between tool and material[J]. J. Mater. Eng. Perform., 2014, 23: 1321 | [13] | Su H, Wu C S, Bachmann M, et al.Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding[J]. Mater. Des., 2015, 77: 114 | [14] | Hamilton C, Sommers A, Dymek S.A thermal model of friction stir welding applied to Sc-modified Al-Zn-Mg-Cu alloy extrusions[J]. Int. J. Mach. Tools Manuf., 2009, 49: 230 | [15] | Bastier A, Maitournam M H, Van K D, et al.Steady state thermos mechanical modelling of friction stir welding[J]. Sci. Technol. Weld. Join., 2006, 11: 278 | [16] | Heurtier P, Jones M J, Desrayaud C, et al.Mechanical and thermal modelling of friction stir welding[J]. J. Mater. Process. Technol., 2006, 171: 348 | [17] | Liechty B C, Webb B W.Modeling the frictional boundary condition in friction stir welding[J]. Int. J. Mach. Tools Manuf., 2008, 48: 1474 | [18] | Schmidt H N B, Dickerson T L, Hattel J H. Material flow in butt friction stir welds in AA2024-T3[J]. Acta Mater., 2006, 54: 1199 | [19] | Colegrove P A, Shercliff H R.3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile[J]. J. Mater. Process. Technol., 2005, 169: 320 | [20] | Su H, Wu C S, Pittner A, et al.Thermal energy generation and distribution in friction stir welding of aluminum alloys[J]. Energy, 2014, 77: 720 | [21] | Haghpanahi M, Salimi S, Bahemmat P, et al.3-D transient analytical solution based on Green's function to temperature field in friction stir welding[J]. Appl. Math. Modell., 2013, 37: 9865 | [22] | Vila?a P, Quintino L, Dos Santos J F, et al. Quality assessment of friction stir welding joints via an analytical thermal model, iSTIR[J]. Mater. Sci. Eng., 2007, A445: 501 | [23] | Ferro P, Bonollo F.A semianalytical thermal model for fiction stir welding[J]. Metall. Mater. Trans., 2010, 41A: 440 | [24] | Mendez P F, Tello K E, Lienert T J.Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding[J]. Acta Mater., 2010, 58: 6012 | [25] | Roy G G, Nandan R, DebRoy T. Dimensionless correlation to estimate peak temperature during friction stir welding[J]. Sci. Technol. Weld. Joining, 2006, 11: 606 | [26] | Chao Y J, Qi X, Tang W.Heat transfer in friction stir welding-experimental and numerical studies[J]. J. Manuf. Sci. Eng., 2003, 125: 138 | [27] | Li T, Shi Q Y, Li H K.Residual stresses simulation for friction stir welded joint[J]. Sci. Technol. Weld. Join., 2007, 12: 664 | [28] | Li H K, Shi Q Y, Zhao H Y, et al.Auto-adapting heat source model for numerical analysis of friction stir welding[J]. Trans. China Weld. Inst., 2006, 27(11): 81(李红克, 史清宇, 赵海燕等. 热量自适应搅拌摩擦焊热源模型[J]. 焊接学报, 2006, 27(11): 81) | [29] | Khandkar M Z H, Khan J A, Reynolds A P. Prediction of temperature distribution and thermal history during friction stir welding: Input torque based model[J]. Sci. Technol. Weld. Join., 2003, 8: 165 | [30] | Hamilton C, Dymek S, Sommers A.A thermal model of friction stir welding in aluminum alloys[J]. Int. J. Mach. Tools Manuf., 2008, 48: 1120 | [31] | Schmidt H, Hattel J.A local model for the thermomechanical conditions in friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2004, 13: 77 | [32] | Guerdoux S, Fourment L.A 3D numerical simulation of different phases of friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075001 | [33] | Zhang Z, Zhang H W.Numerical Simulation of Friction Stir Welding [M]. Beijing: Science Press, 2016: 8(张昭, 张洪武. 搅拌摩擦焊的数值模拟 [M]. 北京: 科学出版社, 2016: 8) | [34] | Colegrove P A, Shercliff H R.Two-dimensional CFD modelling of flow round profiled FSW tooling[J]. Sci. Technol. Weld. Join., 2004, 9: 483 | [35] | Colegrove P A, Shercliff H R.Development of Trivex friction stir welding tool Part 2—Three-dimensional flow modelling[J]. Sci. Technol. Weld. Join., 2004, 9: 352 | [36] | Nandan R, Roy G G, Debroy T.Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding[J]. Metall. Mater. Trans., 2006, 37A: 1247 | [37] | Chen G Q, Shi Q Y, Li Y J, et al.Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy[J]. Comput. Mater. Sci., 2013, 79: 540 | [38] | Shi L, Wu C S.Transient model of heat transfer and material flow at different stages of friction stir welding process[J]. J. Manuf. Process., 2017, 25: 323 | [39] | Rai R, De A, Bhadeshia H K D H, et al. Review: Friction stir welding tools[J]. Sci. Technol. Weld. Join., 2011, 16: 325 | [40] | Biswas P, Mandal N R.Effect of tool geometries on thermal history of FSW of AA1100[J]. Weld. J., 2011, 90: 129 | [41] | Gadakh V S, Kumar A, Patil G J V. Analytical modeling of the friction stir welding process using different pin profiles[J]. Weld. J., 2015, 94: 115 | [42] | Mehta M, Reddy G M, Rao A V, et al.Numerical modeling of friction stir welding using the tools with polygonal pins[J]. Defence Technol., 2015, 11: 229 | [43] | Mehta M, Arora A, De A, et al.Tool geometry for friction stir welding-optimum shoulder diameter[J]. Metall. Mater. Trans., 2011, 42A: 2716 | [44] | Su H.Effect of tool pin profiles on thermal field and plastic material flow in friction stir welding [D]. Ji'nan: Shandong University, 2015(宿浩. 搅拌针截面形状对搅拌摩擦焊接热过程和塑性材料流动的影响 [D]. 济南: 山东大学, 2015) | [45] | Ji S D, Shi Q Y, Zhang L G, et al.Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry[J]. Comput. Mater. Sci., 2012, 63: 218 | [46] | Feulvarch E, Roux J C, Bergheau J M.A simple and robust moving mesh technique for the finite element simulation of friction stir welding[J]. J. Comput. Appl. Math., 2013, 246: 269 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|