Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1215-1226    DOI: 10.11900/0412.1961.2017.00258
Orginal Article Current Issue | Archive | Adv Search |
Advances in Clinical Research of Biodegradable Stents
Xiaonong ZHANG1(), Minchao ZUO1, Shaoxiang ZHANG2, Hongliu WU1, Wenhui WANG1, Wenzhi CHEN1, Jiahua NI1
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Suzhou Origin Medical Technology Co. Ltd., Suzhou 215513, China
Cite this article: 

Xiaonong ZHANG, Minchao ZUO, Shaoxiang ZHANG, Hongliu WU, Wenhui WANG, Wenzhi CHEN, Jiahua NI. Advances in Clinical Research of Biodegradable Stents. Acta Metall Sin, 2017, 53(10): 1215-1226.

Download:  HTML  PDF(6283KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cardiovascular disease has become the first major disease that is harmful to people's health, vascular stents and other percutaneous coronary interventions are considered the most important and effective treatment technology of cardiovascular disease. In this review, the development about percutaneous coronary interventions was simply introduced, through comparing a series of randomized clinical trial data of bioabsorbable vascular stents developed by Abbott of the United States and absorbable magnesium stents developed by Biotronik of Germany, summarizing the shortcomings and analyzing trend in the future of absorbable stents.

Key words:  percutaneous coronary intervention      bioabsorbable vascular stent      absorbable magnesium stent      thrombosis      lumen loss     
Received:  30 June 2017     
ZTFLH:  TB31  
Fund: Supported by National Natural Science Foundation of China (No.51571142), National Key Research and Development Program of China (No.2016YFC1102403) and Shanghai Committee of Science and Technology, China (No.14441901801)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00258     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1215

Fig.1  Development of percutaneous coronary intervention[3]
Fig.2  Structure comparison between Absorb BVS revision 1.0 and revision 1.1[29]
Device thrombosis 30 d 1 a
BVS 2.1% 2.4%
EES 0.3% 1.4%
BMS 1.0% 1.7%
Table 1  Comparison of device thrombosis among BVS/EES/BMS (n=290)[33]
Absorb AIDA BVS Co-Cr EES p
(n=924) (n=921)
TVF 11.7% 10.7% 0.43
Target-vessel MI 5.5% 3.2% 0.04
Cardiac death 2.0% 2.7% 0.43
TVR 8.7% 7.5% 0.37
Definite or probable 3.5% 0.9% <0.001
device thrombosis
Table 2  Clinical outcomes after 2 a follow-up of Absorb AIDA trial[34]
Absorb III Absorb Xience p
(n=1322) (n=686)
TLF 7.8% 6.1% pNI=0.007
Rate of cardiac death 0.6% 0.1% 0.29
Target vessel MI 6.0% 4.6% 0.18
ID-TLR 3.0% 2.5% 0.50
Stent thrombosis 1.5% 0.7% 0.13
Table 3  Clinical outcomes after 1 a follow-up of Absorb III trial[36]
Fig.3  Timing of Absorb bioabsorbable vascular stent reabsorption by OCT[3]
Fig.4  Absorbable magnesium stent before (a) and after (b) expansion[50]
Fig.5  Angiographic results of proximal right coronary artery before (a) and after (b) implantation of AMS[49]
Scaffold Strut material Coating Eluted drug Strut thickness Radio-opacity Radial support Resorption
material μm month month
AMS Mg alloy None None 165 None 2 <4
DREAMS-1G Mg alloy with PLGA Paclitaxel 125 None 3~6 9
rare metal
DREAMS-2G Mg alloy with PLLA Sirolimus 150 Tantalum 3~6 9
rare metal marker
Table 4  Parameters of absorbable magnesium scaffolds[3,49-51]
Fig.6  Angiography and intravascular ultrasound of proximal right coronary artery after post-procedure (a) and 4 months follow-up (b)[49]
Fig.7  Device functionality of drug-eluting absorbable magnesium scaffold over time[24]
Fig.8  Intracoronary ultrasonography findings after drug-eluting absorbable metal scaffold implantation and at 6 months and 12 months follow-up[50] (Δ means area change)
Trial Patient RVD / mm Length of lesion / mm Diameter stenosis
BIOSOLVE-I 46 3.0~3.5 <12 50%~99%
BIOSOLVE-II 123 2.2~3.7 <21 50%~99%
Table 5  Parameters of lesions in BIOSOLVE serial clinical trials[50,51]
Fig.9  Optical coherence tomographs of the second-generation drug-eluting absorbable metal scaffold after post-procedure (a) and 6 months (b)[51]
Fig.10  Comparisons of cumulative frequency curves for late lumen loss among absorbable magnesium scaffolds[51](a) in-segment late lumen loss(b) in-scaffold late lumen loss(c) in segment late lumen loss by comparison among 3 absorbable magnesium scaffolds(d) in scaffold late lumen loss by comparison among 3 absorbable magnesium scaffolds
Parameter AMS DREAMS-1G DREAMS-2G
Patient 63 46 123
Follow-up 4 months (n=63) 6 months (n=36) 12 months (n=34) 6 months (n=112)
In segment LLL / mm 0.83±0.51 0.52±0.48 0.39±0.33 0.27±0.37
In scaffold LLL / mm 1.08±0.49 0.65±0.50 0.52±0.39 0.44±0.36
In segment DS 49.66%±16.25% 29.02%±18.99% 25.31%±12.01% 25.9%±12.3%
In scaffold DS 48.37%±17.00% 25.01%±21.07% 20.92%±16.70% 22.6%±12.9%
In segment MLD / mm 1.34±0.49 1.84±0.52 1.96±0.43 2.55±0.41
In scaffold MLD / mm 1.38±0.51 1.95±0.59 2.06±0.47 2.59±0.40
TLF NA NA 7% 3%
Target vessel MI 0 NA 3% <1%
Clinically driven TLR 23.8% NA 4.3% 1.7%
Scaffold thrombosis 0 0 0 0
Table 6  Comparisons of clinical outcomes among absorbable magnesium scaffolds[49-51]
[1] Hou Z L, Liu D E.Investigation and analysis of common use of drugs for treatment of cardiovascular diseases[J]. Contemp. Med., 2011, 17(29): 137(侯忠玲, 刘代娥. 常见治疗心血管疾病药物使用的调查分析[J]. 当代医学, 2011, 17(29): 137)
[2] Kinch M S, Surovtseva Y, Hoyer D.An analysis of FDA-approved drugs for cardiovascular diseases[J]. Drug Discovery Today, 2016, 21: 1
[3] Indolfi C, De Rosa S, Colombo A.Bioresorbable vascular scaffolds-basic concepts and clinical outcome[J]. Nat. Rev. Cardiol., 2016, 13: 719
[4] Dotter C T, Judkins M P.Transluminal treatment of arteriosclerotic obstruction: Description of a new technic and a preliminary report of its application[J]. Circulation, 1964, 30: 654
[5] Grüntzig A.Transluminal dilatation of coronary-artery stenosis[J]. Lancet, 1978, 311: 263
[6] Sigwart U, Puel J, Mirkovitch V, et al.Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty[J]. New Engl. J. Med., 1987, 316: 701
[7] Palmaz J C, Richter G M, Noeldge G, et al.Intraluminal stents in atherosclerotic iliac artery stenosis: Preliminary report of a multicenter study[J]. Radiology, 1988, 168: 727
[8] Günther R W, Vorwerk D, Bohndorf K, et al.Venous stenoses in dialysis shunts: Treatment with self-expanding metallic stents[J]. Radiology, 1989, 170: 401
[9] Palmerini T, Biondi-Zoccai G, Riva D D, et al.Stent thrombosis with drug-eluting and bare-metal stents: Evidence from a comprehensive network meta-analysis[J]. Lancet, 2012, 379: 1393
[10] Kirtane A J, Gupta A, Iyengar S, et al.Safety and efficacy of drug-eluting and bare metal stents: Comprehensive meta-analysis of randomized trials and observational studies[J]. Circulation, 2009, 119: 3198
[11] Bangalore S, Kumar S, Fusaro M, et al.Outcomes with various drug eluting or bare metal stents in patients with diabetes mellitus: Mixed treatment comparison analysis of 22 844 patient years of follow-up from randomised trials[J]. BMJ, 2012, 345: e5170
[12] Indolfi C, Pavia M, Angelillo I F.Drug-eluting stents versus bare metal stents in percutaneous coronary interventions (a meta-analysis)[J]. Am. J. Cardiol., 2005, 95: 1146
[13] Lemos P A, Serruys P W, van Domburg R T, et al. Unrestricted utilization of sirolimus-eluting stents compared with conventional bare stent implantation in the “real world”: The rapamycin-eluting stent evaluated at rotterdam cardiology hospital (RESEARCH) registry[J]. Circulation, 2004, 109: 190
[14] Serruys P W, Daemen J, Morice M C, et al.Three-year follow-up of the ARTS-II#-sirolimus-eluting stents for the treatment of patients with multivessel coronary artery disease[J]. EuroIntervention, 2008, 3: 450
[15] Serruys P W, Onuma Y, Garg S, et al.5-year clinical outcomes of the ARTS II (arterial revascularization therapies study II) of the sirolimus-eluting stent in the treatment of patients with multivessel de novo coronary artery lesions[J]. J. Am. Coll. Cardiol., 2010, 55: 1093
[16] Lüscher T F, Steffel J, Eberli F R, et al.Drug-eluting stent and coronary thrombosis: Biological mechanisms and clinical implications[J]. Circulation, 2007, 115: 1051
[17] Finn A V, Nakazawa G, Joner M, et al.Vascular responses to drug eluting stents: Importance of delayed healing[J]. Arterioscler. Thromb. Vasc. Biol., 2007, 27: 1500
[18] Kalra A, Rehman H, Khera S, et al.New-generation coronary stents: Current data and future directions[J]. Curr. Atheroscler. Rep., 2017, 19: 14
[19] Stack R S.New interventional technology[J]. Am. J. Cardiol., 1988, 62: F12
[20] Chapman G D, Gammon R S, Bauman R P, et al.Intravascular stents[J]. Trends Cardiovasc. Med., 1991, 1: 127
[21] Yamawaki T, Shimokawa H, Kozai T, et al.Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo[J]. J. Am. Coll. Cardiol., 1998, 32: 780
[22] Tamai H, Igaki K, Kyo E, et al.Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans[J]. Circulation, 2000, 102: 399
[23] Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955
[24] Iqbal J, Onuma Y, Ormiston J, et al.Bioresorbable scaffolds: Rationale, current status, challenges, and future[J]. Eur. Heart J., 2014, 35: 765
[25] Onuma Y, Dudek D, Thuesen L, et al.Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: The absorb cohort a trial[J]. JACC Cardiovasc. Interv., 2013, 6: 999
[26] Borghi Jr T C, Ribamar Costa Jr J, Abizaid A, et al. Comparison of acute stent recoil between the everolimus-eluting bioresorbable vascular scaffold and two different drug-eluting metallic stents[J]. Rev. Bras. Cardiol. Invasiva (Engl. Ed.), 2013, 21: 326
[27] Serruys P W, Onuma Y, Ormiston J A, et al.Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis[J]. Circulation, 2010, 122: 2301
[28] Serruys P W, Onuma Y, Dudek D, et al.Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes[J]. J. Am. Coll. Cardiol., 2011, 58: 1578
[29] Onuma Y, Serruys P W, Gomez J, et al.Comparison of in vivo acute stent recoil between the bioresorbable everolimus-eluting coronary scaffolds (revision 1.0 and 1.1) and the metallic everolimus-eluting stent[J]. Catheter. Cardiovasc. Interv., 2011, 78: 3
[30] Serruys P W, Chevalier B, Dudek D, et al.A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): An interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial[J]. Lancet, 2015, 385: 43
[31] Serruys P W, Chevalier B, Sotomi Y, et al.Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): A 3 year, randomised, controlled, single-blind, multicentre clinical trial[J]. Lancet, 2016, 388: 2479
[32] Felix C M, Vlachojannis G J, IJsselmuiden A J, et al.Very late scaffold thrombosis in Absorb BVS: Association with DAPT termination?[J]. JACC Cardiovasc. Interv., 2017, 10: 625
[33] Brugaletta S, Gori T, Low A F L, et al. Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: The BVS-EXAMINATION study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction)[J]. JACC Cardiovasc. Interv., 2015, 8: 189
[34] Wykrzykowska J J, Kraak R P, Hofma S H, et al.Bioresorbable scaffolds versus metallic stents in routine PCI[J]. New Engl. J. Med., 2017, 376: 2319
[35] Kereiakes D J, Ellis S G, Popma J J, et al.Evaluation of a fully bioresorbable vascular scaffold in patients with coronary artery disease: Design of and rationale for the ABSORB III randomized trial[J]. Am. Heart J., 2015, 170: 641
[36] Ellis S G, Kereiakes D J, Metzger D C, et al.Everolimus-eluting bioresorbable scaffolds for coronary artery disease[J]. New Engl. J. Med., 2015, 373: 1905
[37] Stone G W, Ellis S, Simonton C, et al.Outcomes of the absorb bioresorbable vascular scaffold in very small and not very small coronary arteries: The Absorb III randomized trial[J]. J. Am. Coll. Cardiol., 2016, 67: 35
[38] Gao R L, Yang Y J, Han Y L, et al.Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial[J]. J. Am. Coll. Cardiol., 2015, 66: 2298
[39] Kimura T, Kozuma K, Tanabe K, et al.A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan[J]. Eur. Heart J., 2015, 36: 3332
[40] De Ribamar Costa Jr J, Abizaid A, Bartorelli A L, et al. Impact of post-dilation on the acute and one-year clinical outcomes of a large cohort of patients treated solely with the absorb bioresorbable vascular scaffold[J]. EuroIntervention, 2015, 11: 141
[41] Bowen P K, Drelich J, Goldman J.A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior[J]. Mater. Sci. Eng., 2013, C33: 5064
[42] Heublein B, Rohde R, Kaese V, et al.Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology?[J]. Heart, 2003, 89: 651
[43] Wang J, He Y H, Maitz M F, et al.A surface-eroding poly(1, 3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: Toward better biofunction, biodegradation and biocompatibility[J]. Acta Biomater., 2013, 9: 8678
[44] Gu X N, Zheng Y F.A review on magnesium alloys as biodegradable materials[J]. Front. Mater. Sci. China, 2010, 4: 111
[45] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[46] Agarwal S, Curtin J, Duffy B, et al.Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications[J]. Mater. Sci. Eng., 2016, C68: 948
[47] Wang W, Wang Y L, Chen M, et al.Magnesium alloy covered stent for treatment of a lateral aneurysm model in rabbit common carotid artery: An in vivo study[J]. Sci. Rep., 2016, 6: 37401
[48] Waksman R, Pakala R, Wittchow E, et al.Safety and efficacy of bioabsorbable magnesium-alloy stent in porcine coronary arteries: Morphometric analysis of a long-term study[J]. Cardiovasc. Revasc. Med., 2006, 7: 92
[49] Erbel R, Di Mario C, Bartunek J, et al.Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial[J]. Lancet, 2007, 369: 1869
[50] Haude M, Erbel R, Erne P, et al.Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial[J]. Lancet, 2013, 381: 836
[51] Haude M, Ince H, Abizaid A, et al.Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387: 31
[52] Peeters P, Bosiers M, Verbist J, et al.Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. J. Endovasc. Ther., 2005, 12: 1
[53] Waksman R, Erbel R, Di Mario C, et al.Early and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries[J]. JACC Cardiovasc. Interv., 2009, 2: 312
[54] Meredith I T, Verheye S, Dubois C L, et al.Primary endpoint results of the EVOLVE Trial: A randomized evaluation of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent[J]. J. Am. Coll. Cardiol., 2012, 59: 1362
[55] Serruys P W, Ormiston J, van Geuns R J, et al. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis: 5-year follow-up[J]. J. Am. Coll. Cardiol., 2016, 67: 766
[1] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[2] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[3] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[4] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang. Review: Mechanism of Reactive Element Effect—Oxide Pegging[J]. 金属学报, 2021, 57(2): 182-190.
[7] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[9] Jiangang NIU, Wei XIAO. The Lattice Instability Induced by Ti-Site Ni in B2 Austenite in TiNi Alloy[J]. 金属学报, 2019, 55(2): 267-273.
[10] Jianqiang REN, Shuhua LIANG, Yihui JIANG, Xiang DU. Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites[J]. 金属学报, 2019, 55(1): 126-132.
No Suggested Reading articles found!