Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 492-501    DOI: 10.3724/SP.J.1037.2011.00742
论文 Current Issue | Archive | Adv Search |
VALENCE ELECTRON STRUCTURE ANALYSIS OF EQUILIBRIUM AND METASTABLE PHASES OF Al3M(M=Ti, Zr, Hf)
HUANG Lian, GAO Kunyuan, WEN Shengping, HUANG Hui, WANG Wei, NIE Zuoren
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
Cite this article: 

HUANG Lian, GAO Kunyuan, WEN Shengping, HUANG Hui, WANG Wei, NIE Zuoren. VALENCE ELECTRON STRUCTURE ANALYSIS OF EQUILIBRIUM AND METASTABLE PHASES OF Al3M(M=Ti, Zr, Hf). Acta Metall Sin, 2012, 48(4): 492-501.

Download:  PDF(633KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The valence electron structure of Al3M(M=Ti, Zr, Hf) with three crystal structures (L12, D022, D023) and the corresponding strongest bond energy (EA) values have been calculated from the empirical electron theory (EET) of solids and molecules. Based on the calculated EA, the stability of the phases with different structures and the sequence of phase transition have been analyzed semi--quantitatively. The results showed that, the EA of the equilibrium phases, i.e., D022-Al3Ti, D023-Al3Zr and D022-Al3Hf, were 57.7, 71.6 and 75.6 kJ/mol, respectively, which showed the same trend in magnitude with the corresponding melting point. This consistence supports the reliability of EET--based calculation results. Similarly, the EAof Al3Ti, Al3Zr and Al3Hf with three structures have been calculated and the calculated phase transition sequences are the same as the experimental results and those from first--principles calculation. The L12-type metastable phases of three intermetallic compounds exhibit many excellent characteristics, whereas their phase stability is crucial for application. The EA is supposed to be a measure for the stability of metastable phase. The calculated EA of L12 structure implied the phase stability in the order of Al3Ti3Zr3Hf, which was the same as that from the transition temperatures experimentally. The EA calculated by EET, therefore, could be a good measure for the stability of metastable phase.
Key words:  valence electron structure      Al3M(M=Ti, Zr, Hf)      metastable phase      phase stability     
Received:  30 November 2011     
Fund: 

National Basic Research Program of China (No. 2012CB723307)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00742     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/492

[1] Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D. Intermetallic Compounds of Structural Materials. Beijing:International Industry Press, 2001: 833

    (张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤. 金属间化合物结构材料.北京: 国际工业出版社, 2001: 833)

[2] Hui L H, Geng H R, Wang S R, Xu J.  Mech Eng Mater, 2007; 31: 1

    (惠林海, 耿浩然, 王守仁, 徐杰. 机械工程材料, 2007; 31: 1)

[3] Chen G L.  Mater Rev, 2000; 24: 1

    (陈国良. 材料导报, 2000; 24: 1)

[4] Ding J J, Qin G W, Hao S M, Wang X T, Chen G L. J Phase Equilib, 1996; 17: 117

[5] Murray J, Peruzzi A, Abriata J P.  J Phase Equilib, 1992; 13: 227

[6] Okamoto H.  J Phase Equilib Diffus, 2006; 27: 538

[7] Srinivasan S, Desch P B, Schwarz R B.  Scr Metall Mater, 1991; 25: 2513

[8] Schwarz R B, Desch P B, Srinivasan S, Nash P. Nanostruct Mater, 1992; 1: 37

[9] Srinivasan S, Desch P B, Schwarz R B. In: Turchi P E A, Gonis A eds., Statics and Dynamics of Alloy Phase Transformation.New York: Plenum Press, 1994: 81

[10] Knipling K E, Dunand D C, Seidman D N.  Metall Mater Trans,2007; 38A: 2553

[11] Knipling K E, Dunand D C, Seidman D N.  Z Metallkd, 2006; 97: 246

[12] Perdew J P, Zunger A.  Phys Rev, 1981; 23B: 5048

[13] Wu Z G, Cohen R E.  Phys Rev, 2006; 73B: 235116--1

[14] Yu R H.  Chin Sci Bull, 1978; 23: 217

     (余瑞璜. 科学通报, 1978; 23: 217)

[15] Yu R H.  Chin Sci Bull, 1981; 26: 206

     (余瑞璜. 科学通报, 1981; 26: 206)

[16] Carlsson A E, Meschter P J.  J Mater Res, 1989; 4: 1060

[17] Ghosh G, Asta M.  Acta Mater, 2005; 53: 3225

[18] Kaufman L, Nesor H.  Can Metall Q, 1975; 14: 221

[19] Colinet C, Pasturel A.  Intermetallics, 2002; 10: 751

[20] Alcock C B, Jacob K T, Zador S.  At Energy Rev, 1976; 6: 1

[21] Guo J Q, Ohtera K.  Mater Lett, 1996; 27: 343

[22] Anderson O K.  Phys Rev, 1975; 12B: 3060

[23] Colinet C, Pasturel A.  J Alloys Compd, 2001; 319: 154

[24] Meschel S V, Kleppa O.  J Alloys Compd, 1993; 191: 11

[25] Colinet C, Pasturel A.  Phys Rev, 2001; 64B: 1

[26] Wen J B, Ren M H, Chen S P, Rong Y H.  J Shanghai Jiao Tong Univ,1998; 32: 73

     (文九巴, 任敏华, 陈世朴, 戎咏华. 上海交通大学学报, 1998; 32: 73)

[27] Li P J, Ye Y C, He L J.  Chin Sci Bull, 2008; 53: 1345

     (李培杰, 叶益聪, 何良菊. 科学通报, 2008; 53: 1345)

[28] Gao Y J, Zhong X P, Liu H, Wu W M.  Guangxi Sci, 2003; 10: 32

     (高英俊, 钟夏平, 刘慧, 吴伟明. 广西科学, 2003; 10: 32)

[29] Liu Z L, Li Z L, Liu W D.  Electron Structure of the Interface and Interfacial Properties. Beijing: Science Press, 2002: 7

     (刘志林, 李志林, 刘伟东. 界面电子结构与界面性能. 北京: 科学出版社, 2002: 7)

[30] Zhang R L.  Acta Sci Nat Univ Jilinensis, 1984; 3: 74

     (张瑞林. 吉林大学自然科学学报, 1984; 3: 74)

[31] Zhang R L.  The Empirical Electron Theory of Solids and Molecules.Jilin: Jilin Science and Technology Press, 1993: 268

     (张瑞林. 固体与分子经验电子理论. 吉林: 吉林科技出版社, 1993: 268)

[32] Liu Z L.  Valence Electron Structure and Composition Design of Alloy. Jilin: Jilin Science and Technology Press, 1990: 1

     (刘志林. 合金价电子结构与成分设计. 吉林: 吉林科学技术出版社, 1990: 1)

[33] Peng K, Yi M Z, Ran L P.  Acta Metall Sin, 2006; 42: 1125

     (彭可, 易茂中, 冉丽萍, 金属学报, 2006; 42: 1125)

[34] Nes E.  Acta Metall, 1972; 20: 499

[35] Ryun N.  Acta Metall, 1969: 17: 269

[36] Xu J H, Freeman A J.  Phys Rev, 1990; 41B: 12553

[37] Nicholson D M, Schneibel J H, Shelton W A.  Mater Res Soc,1991; 186: 229

[38] Emmauel C, Sanchez J M.  Phys Rev, 2002; 65B: 094105

[39] Hu G X, Cai X, Rong Y H.  Fundamentals of Materials Science.2nd Ed., Shanghai: Shanghai Jiao Tong University Press, 2003: 359

     (胡赓祥, 蔡, 戎咏华.材料科学基础. 第二版, 上海: 上海交通大学出版社, 2003: 359)

[40] Asboll K, Ryum N.  Inst Met, 1973; 101: 14

[41] Knipling K E, Dunand D C, Seidman D N.  Acta Mater, 2008; 56: 114
 
[1] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[2] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[3] WANG Gang ZHENG Zhuo CHANG Litao XU Lei CUI Yuyou YANG Rui. CHARACTERIZATION OF TiAl PRE–ALLOYED POWDER AND ITS DENSIFICATION MICROSTRUCTURE[J]. 金属学报, 2011, 47(10): 1263-1269.
[4] YANG Rui HAO Yulin Obbard E G DONG Limin LU Bin. ORTHORHOMBIC PHASE TRANSFORMATIONS IN TITANIUM ALLOYS AND THEIR APPLICATIONS[J]. 金属学报, 2010, 46(11): 1443-1449.
[5] ZHAO Yufei FU Yuechun HU Qingmiao YANG Rui. FIRST-PRINCIPLES INVESTIGATIONS OF LATTICE PARAMETERS, BULK MODULI AND PHASE STABILITIES OF Ti1-xVx AND Ti1-xNbx ALLOYS[J]. 金属学报, 2009, 45(9): 1042-1048.
[6] JIN Tao SUN Xiaofeng ZHAO Nairen LIU Jinlai ZHANG Jinghua HU Zhuangqi. STUDY OF MICROSTRUCTURES IN γ/γ'--αMo DIRECTIONAL EUTECTOID ALLOY INDUCED BY LASER  RAPID MELTING SOLIDIFICATION[J]. 金属学报, 2009, 45(5): 527-535.
[7] . FIRST-PRINCIPLES INVESTIGATION OF β PHASE STABILITY AND ELASTIC PROPERTY OF Ti-Mo ALLOYS[J]. 金属学报, 2008, 44(1): 19-22 .
[8] LIU Zhilin; LIU Weidong; LIN Cheng. STRENGTH CALCULATION AND ITS PREDICTION OF NON QUENCHED-TEMPERED STEEL DURING CONTINUOUS CASTING-ROLLING[J]. 金属学报, 2004, 40(12): 1248-1252 .
[9] ZHU Ruifu; LU Yupeng; CHEN Chuanzhong; LI Shitong; WANG Shiqing (Shandong University of Technology; Jinan 250061) ZHANG Fucheng (Yanshan University; Qinhuangdao 066004). AN ANALYSIS OF VALENCE ELECTRON STRUCTURE OF Fe-C-Mn ALLOYING AUSTENITE[J]. 金属学报, 1996, 32(6): 561-564.
[10] ZHANG Jianmin(Central Iron and Steel Research Institute;Ministry;of Metallurgical Industry;Beijing 100081)ZHANG Ruilin;YU Ruihuang(Jilin University;Changchun 130023)(Manuscript received 1994-08-29;in revised form 1995-02-05). HYDROGEN EMBRITTLEMENT BEHAVIOUR IN Fe_3Al[J]. 金属学报, 1995, 31(7): 300-303.
[11] LI Musen; FU Shaoli(Shandong University of Technology; Jinan 250014). XU Wandong(Tianjin University; Mianjin 300072); ZHANG Ruilin. YU Ruihuang(Jilin University; Changchun 130023). VALENCE ELECTRON STRUCTURE OF Fe_2B PHASE AND ITS EIGEN-BRITTLENESS[J]. 金属学报, 1995, 31(5): 201-208.
[12] ZHANG Jishan;CUI Hua;HU Zhuangqi;MURATA Y;MORINAGA M;YUAA WA N Institute of Metal Research; Academia Sinica; Shenyang Toyohashi University of Technology; Japanassociate professor;Institute of Metal Research;Academia Sinica;Shenyang 110015. APPLICATION OF d-ELECTRON ALLOY DESIGN THEORY TO DEVELOPMENT OF HOT CORROSION RESISTANT Ni-BASE SINGLE CRYSTAL SUPERALLOYS——Ⅰ Characterization of Phase Stability[J]. 金属学报, 1993, 29(7): 5-12.
[13] YANG Wenying;ZHANG Shouhua;LU Fanxiu University of Science and Technology Beijing. METASTABLE PHASE IN RAPIDLY SOLIDIFIED Ni_3Al ALLOY[J]. 金属学报, 1992, 28(2): 25-29.
[14] ZHENG Yasgzeng;ZHANG Fucheng Yanshan University; Qinhuangdao. EFFECT OF HETEROGENEOUS DISTRIBUTION OF C AND ALLOYING ELEMENTS ON γ/α′ TRANSFORMATION IN A Fe-Mn-Cr-C ALLOY[J]. 金属学报, 1991, 27(3): 82-85.
[15] XU Huibin;TAN Shusong Technische Universitat Berlin. FRG Department of Materials;Central South University of Technology; Changsha 410083. PREPARATION OF ULTRAFINE PARTICLES OF Fe AND ZrO_2 WITH METASTABLE PHASES BY HIGH POWER LASER BEAMS[J]. 金属学报, 1990, 26(2): 152-155.
No Suggested Reading articles found!