Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1459-1466    DOI: 10.11900/0412.1961.2016.00033
Orginal Article Current Issue | Archive | Adv Search |
COMPOSITION DESIGN AND OPTIMIZATION OF Fe-B-Si-Nb BULK AMORPHOUS ALLOYS
Yaoxiang GENG1(),Yingmin WANG2,Jianbing QIANG2,Chuang DONG2,Haibin WANG1,Ojied TEGUS3
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
3 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China
Cite this article: 

Yaoxiang GENG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. COMPOSITION DESIGN AND OPTIMIZATION OF Fe-B-Si-Nb BULK AMORPHOUS ALLOYS. Acta Metall Sin, 2016, 52(11): 1459-1466.

Download:  HTML  PDF(1100KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-based amorphous alloys are well known for their good magnetic properties including ultrahigh saturation magnetization, low coercive force, high magnetic permeability and low core loss. But these alloys were only prepared into ribbon form in early times due to their insufficient glass-forming abilities (GFAs). The present work focuses on the design of Fe-B-Si-Nb bulk metallic glasses with good soft magnetic properties and high glass-forming ability. Glass formation in Fe-B system is first considered with cluster-plus-glue-atom model. A basic composition formula [B-B2Fe8]Fe is proposed as the framework for multi-component alloy design. Considering the structural stability of the model glass, Si and Nb are introduced to the [B-B2Fe8] cluster to replace the center B and shell Fe atoms, from which a series of Fe-B-Si-Nb alloys with composition formulas [Si-B2Fe8-xNbx]Fe (x=0.1~1.2) are derived. Copper mold casting experiments revealed that bulk glass alloys with a critical diameter (dc) exceeding 1.0 mm are readily obtained with the Nb content range of x=0.2~1.2, the largest dc (about 2.5 mm) appears in the vicinity of x=0.4~0.5. Considering the local packing efficiency of Fe-B-Si-Nb glass model structure, another series alloy compositions, namely, [(Si1-yBy)-B2Fe8-xNbx]Fe is reached by increasing Nb and decreasing Si simultaneously in [Si-B2Fe7.6Nb0.4]Fe basal glass alloys. The experimental results show that bulk glass alloys with dc=2.5 mm are available over a wide range of compositions from (x=0.5, y=0.05) to (x=0.9, y=0.25). Excellent magnetic softness with high saturation magnetizations (Bs=1.14~1.46 T) and low coercive forces (Hc=1.6~6.7 A/m) is found in the [Si-B2Fe8-xNbx]Fe (x=0.2~0.6) series glass alloys. A high fracture strength of 4220 MPa with a plasticity of 0.5% is observed in the [(Si0.95B0.05)-B2Fe7.5Nb0.5]Fe bulk glass alloy.

Key words:  cluster-plus-glue-atom      model,      Fe-B-Si-Nb      bulk      glass      alloy,      mechanical      property,      soft      magnetic      property     
Received:  20 January 2016     
Fund: Supported by National Natural Science Foundation of China (No.51131002), Fundamental Research Funds for the Central Universities (Nos.DUT16ZD209 and DUT13ZD102), Scientific and Technological Development Foundation of China Academy of Engineering Physics (No.2013A03010115), National Magnetic Confinement Fusion Science Program (No.2013GB107003) and the Fund of the State Key Laboratory of Solidification Processing in NWPU (No.SKLSP201607)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00033     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1459

Fig.1  XRD spectra of [Si-B2Fe8-xNbx]Fe (a) and [(Si1-yBy)-B2Fe8-xNbx]Fe (b) rod samples with different critical diameters (dc)
x y Cluster formula Composition dc Tg Tx ΔTx Tl Trg
mm K K K K
0 0 [Si-B2Fe8.0Nb0.0]Fe Fe75B16.67Si8.33 <1.0 - 839 - 1466 -
0.10 0 [Si-B2Fe7.9Nb0.1]Fe Fe74.17B16.67Si8.33Nb0.83 <1.0 - 854 - 1484 -
0.20 0 [Si-B2Fe7.8Nb0.2]Fe Fe73.33B16.67Si8.33Nb1.67 1.0 - 861 - 1480 -
0.30 0 [Si-B2Fe7.7Nb0.3]Fe Fe72.5B16.67Si8.33Nb2.5 2.0 835 869 34 1460 0.572
0.40 0 [Si-B2Fe7.6Nb0.4]Fe Fe71.67B16.67Si8.33Nb3.33 2.5 843 873 30 1463 0.576
0.50 0 [Si-B2Fe7.5Nb0.5]Fe Fe70.83B16.67Si8.33Nb4.17 2.5 845 881 36 1465 0.577
0.60 0 [Si-B2Fe7.4Nb0.6]Fe Fe70B16.67Si8.33Nb5 2.0 853 885 32 1479 0.577
0.70 0 [Si-B2Fe7.3Nb0.7]Fe Fe69.17B16.67Si8.33Nb5.83 1.5 854 895 41 1486 0.575
0.80 0 [Si-B2Fe7.2Nb0.8]Fe Fe68.33B16.67Si8.33Nb6.67 1.5 856 902 46 1500 0.571
0.90 0 [Si-B2Fe7.1Nb0.9]Fe Fe67.5B16.67Si8.33Nb7.5 1.5 862 911 49 1527 0.565
1.00 0 [Si-B2Fe7.0Nb1.0]Fe Fe66.67B16.67Si8.33Nb8.33 1.5 875 917 42 1537 0.569
1.20 0 [Si-B2Fe6.8Nb1.2]Fe Fe65B16.67Si8.33Nb10 1.0 889 930 41 1557 0.571
0.50 0.05 [Si0.95B0.05-B2Fe7.5Nb0.5]Fe Fe70.83B17.08Si7.92Nb4.17 2.5 844 881 37 1463 0.577
0.60 0.10 [Si0.9B0.1-B2Fe7.4Nb0.6]Fe Fe70B17.5Si7.5Nb5 2.5 854 882 28 1463 0.584
0.70 0.15 [Si0.85B0.15-B2Fe7.3Nb0.7]Fe Fe69.17B17.92Si7.08Nb5.83 2.5 858 896 38 1461 0.587
0.80 0.20 [Si0.8B0.2-B2Fe7.2Nb0.8]Fe Fe68.33B18.33Si6.67Nb6.67 2.5 861 903 42 1459 0.590
0.90 0.25 [Si0.75B0.25-B2Fe7.1Nb0.9]Fe Fe67.5B18.75Si6.25Nb7.5 2.5 869 911 42 1478 0.588
1.00 0.30 [Si0.7B0.3-B2Fe7.0Nb1.0]Fe Fe66.67B19.17Si5.83Nb8.33 2.0 872 917 45 1524 0.572
1.10 0.35 [Si0.65B0.35-B2Fe6.9Nb1.1]Fe Fe65.83B19.58Si5.42Nb9.17 2.0 881 924 43 1545 0.570
1.20 0.40 [Si0.6B0.4-B2Fe6.8Nb1.2]Fe Fe65B20Si5Nb10 1.5 889 928 39 1555 0.572
1.30 0.45 [Si0.55B0.45-B2Fe6.7Nb1.3]Fe Fe64.17B20.42Si4.58Nb10.83 1.0 892 934 42 1564 0.570
Table 1  Cluster formulas, chemical compositions (atomic fraction), glass forming ability and thermal data of [Si-B2Fe8-xNbx]Fe and [(Si1-yBy)-B2Fe8-xNbx]Fe amorphous alloys
Fig.2  Bright field TEM images and the corresponding SAED patterns (insets) of [Si-B2Fe7.6Nb0.4]Fe (a) and [(Si0.8B0.2)-B2Fe7.2Nb0.8]Fe (b) rod samples with dc= 2.5 mm
Fig.3  Variations of dc against Si and Nb contents in Fe-B-Si-Nb alloys (The rod glass alloys with dc>2.5 mm would be formed in dashed area)
Fig.4  DSC (a, b) and DTA (c, d) curves of [Si-B2Fe8-xNbx]Fe (a, c) and [(Si1-yBy)-B2Fe8-xNbx]Fe (b, d) glass ribbons
Fig.5  Variations of Tg, Tx (a) and Trg (b) against Nb content x in [Si-B2Fe8-xNbx]Fe and [(Si1-yBy)-B2Fe8-xNbx]Fe samples
Fig.6  Room temperature compressive engineering stress-strain curve of the [(Si0.95B0.05)-B2Fe7.5Nb0.5]Fe bulk glass alloy
Fig.7  Magnetization versus the applied magnetic field (a) and the B-H loops (b) of the [Si-B2Fe8-xNbx] Fe (x=0.2~0.6) glass ribbons
Fig.8  Variations of saturation magnetizations (Bs) and Curie temperature (Tc) against Nb content x in [Si-B2Fe8-xNbx]Fe (x=0.2~0.6) glass alloys
[1] Inoue A, Shinohara Y, Gook J S.Mater Trans JIM, 1995; 36: 1427
[2] Suryanarayana C, Inoue A.Int Mater Rev, 2013; 58: 131
[3] Inoue A.Acta Mater, 2000; 48: 279
[4] Davies H A, Lewis B G.Scr Metall, 1975; 9: 1107
[5] Shen B L, Chang C T, Inoue A.Intermetallics, 2007; 15: 9
[6] Wang W H.Prog Mater Sci, 2007; 52: 540
[7] Lu Z P, Liu C T.J Mater Sci, 2004; 39: 3965
[8] Shen B L, Inoue A, Chang C T.Appl Phys Lett, 2004; 85: 4911
[9] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H.J Phys, 2007; 40D: R273
[10] Miracle D B.Nat Mater, 2004; 3: 697
[11] Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, H?ussler P.Acta Mater, 2011; 59: 5917
[12] Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, H?ussler P.Philos Mag, 2014; 94: 2520
[13] Wu J, Wang Q, Qiang J B, Chen F, Dong C, Wang Y M, Shek C H.J Mater Res, 2007; 22: 573
[14] Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C. Appl Phys Lett, 2006; 88: 101907
[15] Wang Y M, Wang Q, Zhao J J, Dong C.Scr Mater, 2010; 63: 178
[16] Yuan L, Pang C, Wang Y M, Wang Q, Dong C.Intermetallics, 2010; 18: 1800
[17] Gaskell P H.In: Beck H, Güntherodt H J eds., Models for the Structure of Amorphous Metals. Belin, Heidelberg, New York, Tokyo: Springer-Verlag, 1983: 5
[18] Inoue A, Shen B L.Mater Trans, 2002; 43: 766
[19] Amiya K, Urata A, Nishiyama N, Inoue A.Mater Trans, 2004; 45: 1214
[20] Shen B L, Inoue A, Chang C T.Appl Phys Lett, 2004; 85: 4911
[21] Shen B L, Inoue A.J Mater Res, 2005; 20: 1
[22] Geng Y X, Han K M, Wang Y M, Qiang J B, Wang Q, Dong C, Zhang G F, Tegus O, H?ussler P.Acta Metall Sin, 2015; 51: 1017
[22] (耿遥祥, 韩凯明, 王英敏, 羌建兵, 王清, 董闯, 张贵锋, 特古斯, H?ussler P. 金属学报, 2015; 51: 1017)
[23] Geng Y X, Wang Y M, Qiang J B, Zhang G F, Dong C, Tegus O, Sun J Z.Intermetallics, 2015; 67: 138
[24] Geng Y X, Wang Y M, Wang Z Y, Wang H B, Qiang J B, Dong C, Tegus O.Mater Des, 2016; 106: 67
[25] Geng Y X, Wang Y M, Qiang J B, Zhang G F, Dong C, H?ussler P.J Non-Cryst Solids, 2016; 432: 453
[26] Takeuchi A, Inoue A.Mater Trans, 2005; 46: 2817
[27] Inoue A, Shen B L, Chang C T.Acta Mater, 2004; 52: 4093
[28] Inoue A, Shen B L, Chang C T.Intermetallics, 2006; 14: 936
[29] Park J M, Park J S, Na J H, Kim D H, Kim D H. Mater Sci Eng#/magtechI#, 2006; A435-436: 425
[30] Chen H S.Rep Prog Phys, 1980; 43: 353
[31] Li F S, Shen B L, Makino A, Inoue A.Appl Phys Lett, 2007; 91: 234101
[32] Ling H B, Li Q, Li H X, Zhang J J, Dong Y Q, Chang C T, Seonghoon Y. J Appl Phys, 2014; 115: 204901
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[11] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[13] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[14] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[15] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
No Suggested Reading articles found!