Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (1): 85-92    DOI: 10.11900/0412.1961.2015.00184
Current Issue | Archive | Adv Search |
EFFECT OF THE INTERMEDIATE HEAT TREATMENT PROCESSES ON THE OXIDATION CHARACTERIS- TICS OF Zr-1Nb-0.2Y ALLOY IN 420 ℃ AIR
Changji LI1,2,Liangyin XIONG1,2,Shi LIU1,2()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Changji LI,Liangyin XIONG,Shi LIU. EFFECT OF THE INTERMEDIATE HEAT TREATMENT PROCESSES ON THE OXIDATION CHARACTERIS- TICS OF Zr-1Nb-0.2Y ALLOY IN 420 ℃ AIR. Acta Metall Sin, 2016, 52(1): 85-92.

Download:  HTML  PDF(4254KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr-based alloys have been used as cladding tubes in nuclear reactors for several decades due to their superior mechanical properties, good corrosion resistance and low neutron absorption cross-section. Zr alloys consist of hcp-structured a-Zr matrix and dispersed precipitate particles. These precipitate particles play a key role in improving the service performance of the alloy. In general, the manufacturing of Zr-based alloy tubes or sheets involves a series of deformation and annealing processes, which lead to a modification of the precipitate particles in size and distribution and an improvement of comprehensive properties of the alloys. In this work, the effect of intermediate heat treatment processes on precipitate particles and air oxidation characteristics of Zr-1Nb-0.2Y (mass fraction, %) alloy was studied. With increase of rolling and annealing times, the oxidation resistance of Zr-1Nb-0.2Y alloy was improved. The final product from manufacturing route II with intermediate annealing process of 640 ℃, 3 h+570 ℃, 3 h was proved to be most resistant to oxidation in 420 ℃ air. TEM images and EDS results showed that relevant parameters such as precipitate particle volume fraction, precipitate particle mean diameter, Nb+Y content (including mean content and total content) in precipitate particles were modified by intermediate annealing processes, which essentially influenced the oxidation characteristics of Zr-1Nb-0.2Y alloy. The smaller the mean size of precipitate particle and the higher the Nb+Y content in the precipitate particle are, the better the resistance to air oxidation of Zr-1Nb-0.2Y alloy.

Key words:  Zr-1Nb-0.2Y alloy      intermediate heat treatment process      oxidation characteristics      precipitate     
Received:  31 March 2015     
Fund: Supported by National Natural Science Foundation of China (No.91126001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00184     OR     https://www.ams.org.cn/EN/Y2016/V52/I1/85

Fig.1  Four intermediate annealing processes for Zr-1Nb-0.2Y alloy
Fig.2  Oxidation weight gain curves for Zr-1Nb-0.2Y alloy in 420 ℃ air with manufacturing routes of I (a), II (b), III (c) and IV (d)
Fig.3  Comparisons of the weight gain curves for Zr-1Nb-0.2Y alloy with same deformation but different heat treatment processes for samples S4~S7 (a) and S8~S11 (b)
Fig.4  TEM images of samples S1 (a) and S1′ (b), and S1′ in 420 ℃ air for 400 h (c)
Fig.5  Oxidation weight gain curves of samples S1 and S1′ in 420 ℃ air for 472 h
Fig.6  TEM images of Zr-1Nb-0.2Y alloy of samples S1~S11 (a~k)
Fig.7  EDS analysis of the Y-containing precipitate in Zr-1Nb-0.2Y alloy (a) and TEM image of the square precipitates in Zr-0.2Y alloy (b)
Fig.8  Relationships of the weight gain of Zr-1Nb-0.2Y alloy at different manufacturing stages in 420 ℃ air for 532 h with second phase particle (SPP) volume fraction (a), SPP mean size (b), Nb+Y mean content in SPP (c), Nb+Y total content in SPP (d) and Nb+Y total content in matrix (e)
[1] Cox B. J Nucl Mater, 2005; 336: 331
[2] Yilmazbayhan A, Motta A T, Comstock R J, Sabol G P, Lai B, Cai Z H. J Nucl Mater, 2004; 324: 6
[3] Gong W J, Zhang H L, Qiao Y, Tian H, Ni X D, Li Z K, Wang X T. Corros Sci, 2013; 74: 323
[4] Nikulin S A, Khanzhin V G, Rozhnov A B, Belov V A. Met Sci Heat Treat, 2009; 51: 230
[5] Petrova I I, Samsonov B N, Peletsky V E, Nikulina A V, Sokolov N B, Andreeva-Andrievskaya L N. Int J Thermophys, 2002; 23: 1347
[6] Nikulina A V. Met Sci Heat Treat, 2004; 46: 458
[7] Liu J Z. Nuclear Structure Materials. Beijing: Chemical Industry Press, 2007: 5
[7] (刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 5)
[8] Li Z K, Liu J Z, Zhou L, Li C, Zhang J J. Rare Met Mater Eng, 2002; 31: 261
[8] (李中奎, 刘建章, 周 廉, 李 聪, 张建军. 稀有金属材料与工程, 2002; 31: 261)
[9] Canay M, Danón C A, Arias D. J Nucl Mater, 2000; 280: 365
[10] Ni N, Lozano-Perez S, Sykes J M, Smith G D W, Grovenor C R M. Corros Sci, 2011; 53: 4073
[11] Seok C S, Bae B K, Koo J M, Murty K L. Eng Fail Anal, 2006; 13: 389
[12] Steinbrück M, B?ttcher M. J Nucl Mater, 2011; 414: 276
[13] Park J Y, Yoo S J, Choi B K, Jeong Y H. J Nucl Mater, 2008; 373: 343
[14] Park J Y, Choi B K, Yoo S J, Jeong Y H. J Nucl Mater, 2006; 359: 59
[15] Zhou B X, Yao M Y, Li Z K, Wang X M, Zhou J, Long C S, Liu Q, Luan B F. J Mater Sci Technol, 2012; 28: 606
[16] Zhao W J, Liu Y Z, Jiang H M, Peng Q. J Alloys Compd, 2008; 462: 103
[17] Jeong Y H, Park S Y, Lee M H, Choi B K, Baek J H, Park J Y, Kim J H, Kim H G. J Nucl Sci Technol, 2006; 43: 977
[18] Kim H G, Park J Y, Jeong Y H, Koo Y H, Yoo J S, Mok Y K, Kim Y H, Suh J M. J Nucl Sci Technol, 2014; 46: 423
[19] Duriez C, Dupont T, Schmet B, Enoch F. J Nucl Mater, 2008; 380: 30
[20] Batra I S, Singh R N, Sengupta P, Maji B C, Madangopal K, Manikrishna K V, Tewari R, Dey G K. J Nucl Mater, 2009; 389: 500
[21] Batra I S, Singh R N, Khandelwal H K, Mukherjee A, Krishnamurthy N, Gargi C, Shah B K. J Nucl Mater, 2013; 434: 389
[22] Li C J, Xiong L Y, Wu E D, Liu S. J Nucl Mater, 2015; 457: 142
[23] Jeong Y H, Kim H G, Kim T H. J Nucl Mater, 2003; 317: 1
[24] Kim H G, Choi B K, Park J Y, Jeong Y H. Corro Sci, 2009; 51: 2400
[25] Kim H G, Park S Y, Lee M H, Jeong Y H, Kim S D. J Nucl Mater, 2008; 373; 429
[26] Li Q, Liang X, Peng J C, Liu R D, Yu K, Zhou B X. Acta Metall Sin, 2011; 47: 893
[26] (李 强, 梁 雪, 彭剑超, 刘仁多, 余 康, 周邦新. 金属学报, 2011; 47: 893)
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[7] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[8] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[9] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[10] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[11] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[12] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[13] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[14] HUI Yajun, LIU Kun, WU Kemin, LI Qiuhan, NIU Tao, WU Qiaoling. Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel[J]. 金属学报, 2020, 56(12): 1605-1616.
[15] Zhengyan ZHANG,Feng CHAI,Xiaobing LUO,Gang CHEN,Caifu YANG,Hang SU. The Strengthening Mechanism of Cu Bearing High Strength Steel As-Quenched and Tempered and Cu Precipitation Behavior in Steel[J]. 金属学报, 2019, 55(6): 783-791.
No Suggested Reading articles found!