Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (5): 547-553    DOI: 10.3724/SP.J.1037.2009.00669
论文 Current Issue | Archive | Adv Search |
STRESS ORIENTED HYDROGEN INDUCED CRACKING BEHAVIOR OF HEAT AFFECTED ZONE OF L360MCS STEEL IN WET H2S ENVIRONMENT
ZHOU Chengshuang; ZHENG Shuqi; CHEN Changfeng
Mechanical and Electrical Engineering Faculty; China University of Petroleum; Beijing 102249
Cite this article: 

ZHOU Chengshuang ZHENG Shuqi CHEN Changfeng. STRESS ORIENTED HYDROGEN INDUCED CRACKING BEHAVIOR OF HEAT AFFECTED ZONE OF L360MCS STEEL IN WET H2S ENVIRONMENT. Acta Metall Sin, 2010, 46(5): 547-553.

Download:  PDF(968KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stress oriented hydrogen induced cracking (SOHIC) behavior of heat affected zone (HAZ) of L360MCS steel in wet H$_{2}$S
environment was studied by separating crack, SEM and EDS. The cracks are formed by four--point bending test in
wet H$_{2}$S environment. The microstructure of HAZ is obviously different from
the base metal, and the hardness of HAZ is lower than those of the base metal and welding joint. The fracture
surface of the cracks was separated and the hydrogen blisters were torn off. The cross section and fracture surface of
the cracks are analyzed by SEM and EDS. Results show that the cracks of SOHIC appeared as axial crack and vertical
crack, and the former is preferential. The appearance of cracks is associated with the low hardness value of
HAZ. The dimension of hydrogen blasters in tension stress zone of bended specimen is bigger than that in
unstressed specimen, which is due to hydrogen concentration in bended specimen is higher. Both axial and vertical
cracks nucleate independently and propagate in the quasi--cleavage manner. Tension stress not only increases the
supersaturated hydrogen concentration in tension stress zone but directly promotes vertical crack propagation.
Axial crack nucleates at MnS, CaS and precipitated phase, and propagates under internal hydrogen pressure.
Vertical crack mainly nucleates on precipitated phase and propagates under both internal hydrogen pressure and
tensile stress.

Key words:  pipeline steel      heat affected zone (HAZ)      stress oriented hydrogen induce cracking (SOHIC)      H2S      tension stress     
Received:  10 October 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50871122), Specialized Research Fund for the Doctoral Program of Higher Education (No.20070425021})

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00669     OR     https://www.ams.org.cn/EN/Y2010/V46/I5/547

[1] Pargeter R J. In: NACE, ed., Corrosion 2007, Houston, TX: NACE, 2007: 115
[2] Guo H, Li G F, Cai X, Yang W. Acta Metall Sin, 2004; 40: 967
(郭浩, 李光福, 蔡珣 , 杨武. 金属学报, 2004; 40: 967)
[3] Ren X C, Wu M, Chu W Y, Li J X, Jiao L J, Jiang B, Chen G, Cui Y H. Acta Metall Sin, 2007; 43: 149
(任学冲, 武明, 褚武扬, 李金许, 乔利杰, 江波, 陈 刚, 崔银会. 金属学报, 2007; 43: 149)

[4] Liu Z Y, Zhai G L, Dui C W, Li X G. Acta Metall Sin, 2008; 44: 209
(刘智勇, 翟国丽, 杜翠薇, 李晓刚. 金属学报, 2008; 44: 209)
[5] Guo J, Yang S W, Shang C J, Wang Y, He X L. Corros Sci, 2008; 51: 242
[6] Ernesto V, Andrej A. Eng Fail Anal, 2009; 16: 164
[7] Cayard M S, Kane R D, Cooke D L. In: NACE, ed., Corrosion 97, Houston, TX: NACE, 1997: 525
[8] Cayard M S, Kane R D, Horvath R J. In: NACE ed., Corrosion 2002, Houston, TX: NACE, 2002: 554
[9] Orie K E, Fletcher F B. In: NACE, ed., Corrosion 99, Houston, TX: NACE, 1999: 632

[10] NACE International. NACE Standard MR0177–2005, Houston, 2005
[11] ASTM. ASTM Standard G39–99, Philadelphia, 2005
[12] NACE International. NACE Standard MR0284–2003, Houston, 2003
[13] Zhao M C, Shan Y Y, Qu J B, Xiao F R, Zhong Y, Yang K. In: CSM ed., CSM 2001 Annual Meeting Proceedings. Beijing: Metallurgical Industry Press, 2001: 891
(赵明纯, 单以银, 曲锦波, 肖福仁, 仲勇, 杨柯. 见中国金属学会主编, 2001年中国钢铁年会论文集.
北京: 冶金工业出版社, 2001: 891)

[14] Lee H W. Mater Sci Eng, 2007; A445: 328
[15] Sojka J, Jerome M, Sozanska M, Vanova P, Rytirova L, Jonsta P. Mater Sci Eng, 2008; A430: 237
[16] Wan K K, Seong U K, Boo Y Y, Kyoo Y K. Corros Sci, 2008; 50: 3336
[17] Parkins R N. Corrosion, 1987; 43: 130
[18] Chu R, Chen W, Wang S H. Corrosion, 2004; 60: 275
[19] Lynch S P. In: NACE, ed., Corrosion 2007, Houston, TX: NACE, 2007: 493
[20] Maroecic P, Mclellan R B. Acta Metall, 1998; 46: 5593
[21] Zang D, MeLellan R B. Acta Metall, 1999; 47: 1671
[22] Harada S, Ono D, Sugimoto H, Fukai Y. J Alloys Compd, 2007; 446: 474
[23] Rebak R B, Xia Z, Safruddin R, Szklarska S Z. Corrosion, 1996; 52: 396

[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[4] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[5] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[6] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[7] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[8] Xianbo SHI, Wei YAN, Wei WANG, Yiyin SHAN, Ke YANG. Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2018, 54(10): 1343-1349.
[9] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[10] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[11] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[12] Xianbo SHI,Dake XU,Maocheng YAN,Wei YAN,Yiyin SHAN,Ke YANG. Study on Microbiologically Influenced Corrosion Behavior of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2017, 53(2): 153-162.
[13] Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. 金属学报, 2017, 53(12): 1579-1587.
[14] Libao YU, Maocheng YAN, Jian MA, Minghao WU, Yun SHU, Cheng SUN, Jin XU, Changkun YU, Yongchang QING. Sulfate Reducing Bacteria Corrosion of Pipeline Steel inFe-Rich Red Soil[J]. 金属学报, 2017, 53(12): 1568-1578.
[15] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
No Suggested Reading articles found!