Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 513-518    DOI: 10.3724/SP.J.1037.2011.00683
论文 Current Issue | Archive | Adv Search |
STUDY ON SHAPE RECOVERY TEMPERATURE OF TiNi ALLOY LASER WELD JOINT
YANG Chenggong1, SHAN Jiguo1,2, REN Jialie1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084
Cite this article: 

YANG Chenggong, SHAN Jiguo, REN Jialie. STUDY ON SHAPE RECOVERY TEMPERATURE OF TiNi ALLOY LASER WELD JOINT. Acta Metall Sin, 2012, 48(5): 513-518.

Download:  PDF(2800KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to control the shape memory function of TiNi alloy weld joint, it is necessary to clarify the effect of the three different parts (weld metal, heat-affected zone (HAZ) and base metal) on the shape recovery temperatures of the whole weld joint, but few reports are available on this aspect. In this work, the microstructure in the HAZ was studied by Gleeble thermal-simulation test. Phase transformation temperatures of weld joint, weld metal, HAZ and base metal were measured by differential thermal analysis. The inverse phase transformation temperature was analyzed. The microstructure, distribution of precipitation and crystal structure were investigated by using OM, SEM and XRD. The weld joint shows the similar shape recovery ratio to the base metal, but the shape recovery temperature range is significantly different. The start recovery temperature of the weld joint is lower about 40 ℃ than that of the base metal. Both of the austenite start temperature (As) and finish temperature (Af) of the weld metal and HAZ vary much compared with the base metal. The change in the weld metal is attributed to the fusion-solidification process, in which the preferred crystal orientation is lost. The newly formed precipitation phases show a small size and an uneven distribution. The change in the HAZ refers to the drop of As and Af, which is possibly caused by the solution of minor precipitation phase in the matrix. The Asand Af of the laser weld joint are quite the same as those of the weld metal for TiNi shape memory alloy, which indicates that the key to guarantee the shape memory function lies in controlling the phase transformation temperatures of the weld metal.
Key words:  TiNi alloy      shape recovery temperature      weld joint      weld metal      heat affected zone (HAZ)      laser welding     
Received:  03 November 2011     
ZTFLH: 

TG456.7

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00683     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/513

[1] Zhao L C, Cai W, Zheng Y F.  Shape Memory Effect and Superelasticity in Alloys. Beijing: National Defense Industry Press, 2002: 5

    (赵连成, 蔡伟, 郑玉峰. 合金的形状记忆效应和超弹性.北京: 国防工业出版社, 2002: 5)

[2] Xu Z Y.  Shape Memory Materials. Shanghai: Shanghai Jiao Tong University Press, 2002: 18

    (徐祖耀. 形状记忆材料. 上海: 上海交通大学出版社, 2002: 18)

[3] Funakubo H, translate by Qian D F.  Shape Memory Alloys.Beijing: China Machine Press, 1984: 85

    (Funakubo H 著, 千东范 译. 形状记忆合金. 北京: 机械工业出版社, 1984: 85)

[4] Otsuka K, Mayman C M.  Shape Memory Materials. Cambridge:Cambridge University Press, 1998: 49

[5] Yang J, Wu Y H.  Shape Memory Alloys and Their Applications.Hefei: Chinese Science and Technology University Press, 1993: 36

    (杨杰, 吴月华. 形状记忆合金及其应用. 合肥: 中国科学技术大学出版社,1993: 36)

[6] Ren J L, Wu A P.  Joining of Advanced Materials. Beijing:China Machine Press, 2000: 335

    (任家烈, 吴爱萍. 先进材料的连接. 北京: 机械工业出版社, 2000: 335)

[7] Ikai A, Kimura K, Tobushi H.  J Intell Mater Syst Struct,1996; 7: 646

[8] Tuissi A, Besseghini S, Ranucci T, Squatrito F, Pozzi M. Mater Sci Eng, 1999; A273-275: 813

[9] Hsu Y T, Wang Y R, Chen C.  Metall Mater Trans, 2001; 32A: 569

[10] Falvo A, Furgiuele F M, Maletta C.  Mater Sci Eng, 2005; A412: 235

[11] Xu Y L, Cheng Z F, Fan X L, Chu C L, Wang S D.  Trans Chin Weld Inst, 2006; 27: 26

     (徐越兰, 成志富, 范晓龙, 储成林, 王世栋. 焊接学报, 2006; 27: 26)

[12] Falvo A, Furgiuele F M, Maletta C.  Mater Sci Eng,2008; A481-482: 647

[13] Barcellona A, Fratini L, Palmeri D, Maletta C, Brandizzi M. Int J Mater Form, 2010; 3: 1047

[14] Yang C G, Shan J G, Wen P, Ren J L.  Acta Metall Sin,2011; 47: 1277

     (杨成功, 单际国, 温鹏, 任家烈. 金属学报, 2011, 47: 1277)

[15] Xie C Y, Zhao L C, Lei T Q.  Acta Aeronaut Astronaut Sin,1991; 12: A395

     (谢超英, 赵连成, 雷廷权. 航空学报, 1991; 12: A395)

[16] Xie C Y, Zhao L C, Lei T Q.  Met Sci Technol, 1990; 9: 118

     (谢超英, 赵连成, 雷廷权. 金属科学与工艺, 1990; 9: 118)

[17] Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G.  Acta Mater,2006; 54: 3525

[18] Fan G, Chen W, Yang S, Zhu J, Ren X, Otsuka K.  Acta Mater,2004; 52: 4351

[19] Huang Y S, Lin G M, Lai Q L.  Chin J Nonferrous Met, 1993; 3: 57

     (黄元士, 林光明, 赖奇略. 中国有色金属学报, 1993; 3: 57)
 
[1] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[2] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[3] Jiangang NIU, Wei XIAO. The Lattice Instability Induced by Ti-Site Ni in B2 Austenite in TiNi Alloy[J]. 金属学报, 2019, 55(2): 267-273.
[4] Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. 金属学报, 2017, 53(6): 657-668.
[5] Hongliang MING,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN,Mingxing SU. Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW[J]. 金属学报, 2017, 53(1): 57-69.
[6] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
[7] Fengyu SONG,Yanmei LI,Ping WANG,Fuxian ZHU. EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD[J]. 金属学报, 2016, 52(7): 890-896.
[8] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[9] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[10] YU Cheng, WU Shengchuan, HU Yanan, ZHANG Weihua, FU Yanan. THREE-DIMENSIONAL IMAGING OF GAS PORES IN FUSION WELDED Al ALLOYS BY SYNCHROTRON RADIATION X-RAY MICROTOMOGRAPHY[J]. 金属学报, 2015, 51(2): 159-168.
[11] MO Wenlin, ZHANG Xu, LU Shanping, LI Dianzhong, LI Yiyi. EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL[J]. 金属学报, 2015, 51(2): 230-238.
[12] ZHANG Gang, SHI Yu, LI Chunkai, HUANG Jiankang, FAN Ding. RESEARCH ON THE CORRELATION BETWEEN THE STATUS OF THREE-DIMENSIONAL WELD POOL SURFACE AND WELD PENETRATION IN TIG WELDING[J]. 金属学报, 2014, 50(8): 995-1002.
[13] LI Yubin, WANG Wei, HE Jianjun, ZHANG Zhiqiang, ZHANG Tongyan. MICROSTRUCTURE AND MECHANICAL PROPERTY OF LASER WELDED JOINT FOR HYPOEUTECTOID U-Nb ALLOY[J]. 金属学报, 2014, 50(3): 379-386.
[14] GAO Heng, SONG Yuanyuan, ZHAO Mingjiu, HU Xiaofeng, RONG Lijian. EFFECTS OF TEMPERING ON THE MICROSTRUC-TURE AND MECHANICAL PROPERTY OF ELECTRON BEAM WELDING JOINT OF 9Cr2WVTa STEEL[J]. 金属学报, 2014, 50(12): 1429-1436.
[15] YU Qiaohong, LIU Chao, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION BEHAVIORS OF Q235 WELD JOINT[J]. 金属学报, 2014, 50(11): 1319-1326.
No Suggested Reading articles found!