Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1046-1054    DOI: 10.3724/SP.J.1037.2011.00089
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL
LAN Liangyun 1, QIU Chunlin 1, ZHAO Dewen 1, LI Canming 1,2, GAO Xiuhua 1, DU Linxiu 1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. Technical Research and Development Center, Laiwu Steel Group, Laiwu 271104
Cite this article: 

LAN Liangyun QIU Chunlin ZHAO Dewen LI Canming GAO Xiuhua DU Linxiu. MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL. Acta Metall Sin, 2011, 47(8): 1046-1054.

Download:  PDF(1321KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  It is generally recognized that welding heat affected zone (WHAZ) is the poorest toughness region in the welded joint of low carbon bainitic steels. The thermomechanical simulator was employed to simulate the welding thermal cycle processes of different sub–regions in WHAZ of low carbon bainitic steel in this work. The toughness of simulated specimens were tested on the instrumented drop weight impact tester with oscilloscope, and miscrostructure features were observed by means of OM, SEM, TEM and EBSD. The results showed that when cooling time (t8/5) was 30 s, the crack initiation energy of various sub–regions was similar, and the range of their values was between 40 and 70 J. However, fine grained heat affected zone (FGHAZ) exhibited excellent crack arrest properties because the impact load–time curve included wide crack ductile propagation and crack brittle propagation stages. By contrast, the crack propagation energy of intercritical heat affected zone (ICHAZ) and coarse grained heat affected zone (CGHAZ) obviously deteriorated. With the increase in cooling time, both crack initiation energy and crack propagation energy of various sub–regions decreased, in which the crack initiation energy of CGHAZ and the crack propagation energy of FGHAZ decreased notably. Under different cooling rates, the variation of morphology and size of M–A constituents was mainly responsible for the deterioration of crack initiation energy. As for crack propagation energy, the FGHAZ had a good resistance to crack propagation due to high density of high angle grain boundary. Therefore, its crack propagation energy was far superior to other sub–regions. There was uneven effective grain size in the ICHAZ and ferrite grain grew with the decease in cooling rate, which decreased the crack propagation energy. In the CGHAZ, prior austenite grains coarsened and the density of high angle grain boundaries decreased greatly, which resulted in the decrease in crack propagation energy.
Key words:  low carbon bainitic steel      heat affected zone      impact toughness      M–A constituent      high angle grain boundary     
Received:  25 February 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51074052) and Fundamental Research Funds for the Central Universities (No.100607001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00089     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1046

[1] Shanmugam S, Ramisetti N K, Misra R D K, Hartmann J, Jansto S G. Mater Sci Eng, 2008; A478: 26

[2] Yao L D, Zhao X T, Zhao S X. US Pat, 0032062Al, 2010

[3] Shome M, Gupta O P, Mohanty O N. Metall Mater Trans, 2004; 35A: 985

[4] Li C, Wang Y, Han T, Han B, Li L. J Mater Sci, 2011; 46: 727

[5] Chen J H, Kikuta Y, Araki T, Yoneda M, Matsuda Y. Acta Metall, 1984; 32: 1779

[6] Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46

[7] Sawai T, Wakoh M, Ueshima Y, Mizoguchi S. ISIJ Int, 1992; 32: 169

[8] Kojima A, Kiyose A, Uemori R, Minagawa M, Hoshino M, Nakashima T, Ishida K, Yasui H. Nippon Steel Technol Rep, 2004; 90: 2

[9] Bob I. Weld J, 1991; 70: 56

[10] Terada Y, Tamehiro H, Morimoto H, Hara T, Tsuru E,Asahi H. Proc OMAE, 2003: 1

[11] Rodriguez–Ibabe J M. Mater Sci Forum, 1998, 284–286: 51

[12] Guo A M,Misra R D K, Liu J B, Chen L, He X L, Jansto S J. Mater Sci Eng, 2010; A527: 6440

[13] Lambert P A, Gourgues A F, Besson J, Sturel T, Pinear A. Metall Mater Trans, 2004; 35A: 1039

[14] Gallo C, Alvarez J A, Gutierrez–Solana F, Polanco J A. Eur Struct Integr Soc, 2002; 30: 271

[15] Cvetkovski S, Adziev T, Adziev G, Sedmak A. Eur Struct Integr Soc, 2002; 30: 95

[16] Shi Y W. China Materials Engineering Canon: Materials Welding Engineering Vol.22. Beijing: Chemistry Industral Press, 2007: 128

(史耀武. 中国材料工程大典---材料焊接工程. 第22卷. 北京: 化学工业出版社, 2007: 128)

[17] Diaz–Fuentes M, Iza–Mendia A, Gutierrez I. Metall Mater Trans, 2003, 23A: 2505

[18] Lee J L, Pan Y T. Mater Sci Eng, 1991; A136: 109

[19] Biss V, Cryderman R L. Metall Trans, 1971; 2: 2267

[20] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K. Acta Mater, 2006; 54: 435

[21] McMahon C J, Cohen M. Acta Metall, 1965; 13: 591

[22] Poorhaydari K, Patchett B M, Ivey D G. Mater Sci Eng, 2006; A435–436: 371

[23] Bonnevie E, Ferriere G, Ikhlef A, Kaplan D, Orain J M. Mater Sci Eng, 2004; A385: 352

[24] Lambert A, Drillet J, Gourgues A F, Sturel T, Pineau A. Sci Technol Weld Join, 2000; 5: 168

[25] Zhao M C, Hanamura T, Qiu H, Yang K. Mater Sci Eng, 2005; A395: 327

[26] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541

(缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)

[27] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26

[28] Li Y, Baker T N. Mater Sci Technol, 2010; 26: 1029
[1] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[2] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[3] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[4] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[5] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[6] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[7] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[8] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[9] Teng GUO, Hongtao LI, Bailing JIANG, Yibin XING, Xinyu ZHANG. Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings[J]. 金属学报, 2018, 54(3): 463-469.
[10] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[11] Zhiqiang SHU,Pengbin YUAN,Zhiying OUYANG,Danmei GONG,Xueming BAI. Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo[J]. 金属学报, 2017, 53(6): 669-676.
[12] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[13] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
[14] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[15] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
No Suggested Reading articles found!