Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 610-618    DOI: 10.3724/SP.J.1037.2013.00659
Current Issue | Archive | Adv Search |
EFFECTS OF RE ON THE SOLIDIFICAIION CHARACTERISTICS OF Al-80%Si ALLOY
WEN Qiang, JIAN Zengyun(), ZHU Man, CHANG Fang'e, DANG Bo
Shaanxi Province Key Laboratory of Photoelectric Functional Materials and Devices, Xi'an Technological University, Xi'an 710021
Cite this article: 

WEN Qiang, JIAN Zengyun, ZHU Man, CHANG Fang'e, DANG Bo. EFFECTS OF RE ON THE SOLIDIFICAIION CHARACTERISTICS OF Al-80%Si ALLOY. Acta Metall Sin, 2014, 50(5): 610-618.

Download:  HTML  PDF(14707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effects of rare earth (RE) on the morphologies of the recalescence interface, the growing primary Si during the solidification process and the structure after solidification of Al-80%Si alloy were investigated by means of high speed camera and SEM. The critical undercooling ?T1 and ?T2 for the morphology transition of the recalescence interface, the growing primary Si and the structure have been obtained. When the undercooling is lower than ?T1, the morphology of the growing crystal during the solidification process is flake-like; and the structure after the solidification process is composed of large flake grains with pronounced edges and faces. When the undercooling is greater than ?T2, the recalescence interface is a parallel one, and the structure after solidification is composed of homogenous and fine grains, and there exist several smooth spherical bulges on the surface of each grain. In the undercooling region from ?T1 to ?T2 , the recalescence interface and the growing crystal show dendritic features, but some of the dendrites are distributed regularly; after solidification, the structure is composed of refined equiaxed grains and flake grains. For Al-80%Si alloy, ?T1 and ?T2 are equal to 132 and 250 K, respectively. RE can reduce the values of ?T1 and ?T2 . When 1%RE is added into the alloy,?T1 and ?T2 are changed to 60 and 199 K, respectively.

Key words:  Al-Si alloy      primary Si      RE      undercooling      structure     
Received:  17 October 2013     
ZTFLH:  TG111.4  
Fund: Supported by National Basic Research Program of China (No.2011CB610403) and National Natural Science Foundation of China (Nos.51371133, 51071115 and 51171136)
About author:  null

文 强, 男, 1987年生, 硕士生

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00659     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/610

Fig.1  

Al-80%Si合金试样在不同过冷度下凝固的表面形貌

Fig.2  

Al-80%Si-1%RE合金试样在不同过冷度下凝固的表面形貌

Fig.3  

Al-80%Si合金试样在不同过冷度下凝固后表面的SEM像

Fig.4  

Al-80%Si-1%RE合金试样在不同过冷度下凝固后表面的SEM像

Fig.5  

Al-80%Si-1%RE合金的T-t曲线

[1] Zuo M, Jiang K F, Liu X F. J Alloys Compd, 2010; 503: L26
[2] Faraji M, Todd I, Jones H. J Mater Sci, 2005; 40: 6363
[3] Jiang Q C, Xu C L, Lu M, Wang H Y. Mater Lett, 2005; 59: 624
[4] Yi H, Zhang D. Mater Lett, 2003; 57: 2523
[5] Ohmi T, Matsuura K, Kudoh M. J Jpn Inst Light Met, 1998; 48: 618
[6] Jian Z Y, Zhu M, Jie W Q. Mater China, 2010; 29: 20
(坚增运, 朱 满, 介万奇. 中国材料进展, 2010; 29: 20)
[7] Hernandez F C R, Sokolowski J H. J Alloys Compd, 2006; 426: 205
[8] Jin F W, Ren Z M, Ren W L, Deng K, Zhong Y B, Yu J B. Sci Technol Adv Mater, 2008; 9: 024202
[9] Xu C L, Wang H Y, Yang F Y, Jiang Q C. Mater Sci Eng, 2007; A452: 341
[10] Zuo M, Liu X F, Sun Q Q, Jiang K. J Mater Process Technol, 2009; 209: 5504
[11] Zhang Q, Liu X F, Dai H S. J Alloys Compd, 2009; 480: 376
[12] Yu L N, Liu X F, Ding H M, Bian X F. J Alloys Compd, 2007; 432: 156
[13] Zuo M, Zhao D G, Teng X Y, Geng H R, Zhang Z S. Mater Des, 2013; 47: 857
[14] Wu Y P, Wang S J, Li H, Liu X F. J Alloys Compd, 2009; 477: 139
[15] Shi W X, Gao B, Tu G F, Li S W, Hao Y, Yu F X. J Rare Earth, 2010; 28: 367
[16] Chang J Y, Kim G H, Moon I G, Choi C S. Scr Mater, 1998; 39: 307
[17] Chen C, Liu Z X, Ren B, Wang M X, Weng Y G, Liu Z Y. Trans Nonferrous Met Soc China, 2007; 17: 301
[18] Li Q L, Xia T D, Lan Y F, Li P F, Fan L. Mater Sci Eng, 2013; A588: 97
[19] Wei B K, Lin H T, Liu J M, Cai Q Z, Tong X L, Mao Y F. Spec Cast Nonferrous Alloys, 1993; (3): 6
(魏伯康, 林汉同, 刘俊明, 蔡启舟, 童杏林, 毛玉凤. 特种铸造及有色合金, 1993; (3): 6)
[20] Xu C L, Jiang Q C, Yang Y F, Wang H Y, Wang J G. J Alloys Compd, 2006; 422: L1
[21] Shi W X, Gao B, Tu G F, Li S W. J Alloys Compd, 2010; 508: 480
[22] Li Q L, Xia T D, Lan Y F, Zhao W J, Fan L, Li P F. J Alloys Compd, 2013; 562: 25
[23] Jian Z Y, Nagashio K, Kuribayashi K. Metall Mater Trans, 2002; 33A: 2947
[24] Jian Z Y, Kuribayashi K, Jie W Q, Chang F E. Acta Mater, 2006; 54: 3227
[25] Liu R P, Volkmann T, Herlach D M. Acta Mater, 2001; 49: 439
[26] Wang Q, Liu R P, Qian Y Q, Lou D C, Su Z B, Ma M Z, Wang W K, Panofen C, Herlach D M. Scr Mater, 2006; 54: 37
[27] Lu S Z, Hellawell A. Metall Mater Trans, 1987; 18A: 1721
[28] Jian Z Y, Yang X Q, Chang F E, Jie W Q. Metall Mater Trans, 2010; 41A: 1826
[29] David R L. CRC Handbook of Chemistry and Physics. Tokyo: CRC Press, 1989: B2
[30] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2004; 52: 3323
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[8] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[9] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[11] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[12] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[13] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[14] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[15] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
No Suggested Reading articles found!