Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 121-128    DOI: 10.3724/SP.J.1037.2013.00476
Original Articles Current Issue | Archive | Adv Search |
RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING
LI Yongkui, CHEN Jundan, LU Shanping()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LI Yongkui, CHEN Jundan, LU Shanping. RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING. Acta Metall Sin, 2014, 50(1): 121-128.

Download:  HTML  PDF(9175KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

42CrMo steel, a typical low alloy medium carbon structural steel, is widely used in important structural components that require high strength, plasticity and toughness, such as crane weight-on-wheel, automobile crank shaft, locomotive gear hub, oil drill pipe joints of deep well, fishing tools and so on, for its good harden ability, high temperature strength, good creep resistance and little quenching deformation. The wheels of the polar crane that used in the Chinese third generation nuclear power plant are made of steel 42CrMo. However, cracks and surface peeling normally occur after heat treatment at quenching process of wheel forgings. There is important application background and practical significance to research the effect of the heat treatment process on the microstructures and mechanical properties and the influence of porosity defects inside the forging wheel on the heat treatment process. Large numbers of research work had been focused on segregation and heat treatment process for solving this matter in passing days. This work aims to study the effects of thermal residual stress on porosity defect in a wheel, and explain the reason for cracking and surface feeling in the way of mechanical behavior during quenching. A wheel with surface peeling was analyzed by measuring chemical compositions, macro- and micro-crack observation. Random testing position for mechanical compositions showed that the effects of segregation was small in the wheel. A set of tests and measurements for thermal mechanical properties of 42CrMo steel were conducted from room temperature to 850 oC. FEM models containing porosity defects in different sizes and without defects were constructed by Abaqus for studying the residual stresses during quenching in fully coupled temperature-displacement analysis. Simulation results indicate that the porosity defects in wheel cause stress concentration within themselves. The maximum residual stress is not affected by the length of porosity region. The hoop residual stress in porosity region in the wheel due to quenching process is in the highest level and believed to be the driving force of cracks. According to the stress distribution in the wheel, the cracks caused by the hoop residual stress can not propagate out of the defects region too far. While the assumptions of surface peeling of wheel are concluded due to combined influence of the residual stress and external loads when the defects region emerges near the wheel surface border in view of the current simulation.

Key words:  42CrMo steel      surface peeling      quenching      porosity defect      finite element method     
Received:  05 August 2013     
ZTFLH:  TG157  
Fund: Supported by Science and Technology Projects of Liaoning Province (No.2010224008)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00476     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/121

Fig.1  

42CrMo钢车轮锻件的OM像

Model Symmetry Position of defect Size in axis
mm
Distance among of
porosity / mm
Number of element
Model-0 1/4 symmetric model


14 mm to inner surface of wheel model


0 0 216240
Model-10 10 1.5 129514
Model-50 50 1.5 231372
Model-80 80 1.5 348603
Model-10ma
1/2 symmetric model At margin of wheel model 10 1.5 121274
表1  无缺陷及含缺陷有限元模型
Fig.2  

包含疏松缺陷的42CrMo车轮1/4有限元模型

Fig.3  

42CrMo车轮件裂纹和疏松缺陷的OM像

Fig.4  

42CrMo车轮件裂纹的SEM像

Temperature

Elastic modulus
105 MPa
Poisson's
ratio
Specific heat
Jkg-1-1
Thermal
expansion
10-6 -1
Thermal conductivity
Wm-1-1
20 2.08 0.29 - - -
100 2.05 0.29 546 11.9 35.1
200 1.98 0.29 563 12.5 35.1
300 1.91 0.30 580 12.9 35.1
400 1.85 0.30 631 12.9 35.2
500 1.78 0.30 720 13.3 34.9
600 1.68 0.31 730 13.6 32.0
700 1.53 0.31 795 13.9 27.9
800 1.32 0.32 539 10.6 21.1
900 1.11 0.34 588 12.0 24.2
1000 1.04 0.34 591 13.0 24.5
表2  42CrMo钢的热物性参数
Fig.5  

不同温度下42CrMo钢的应力-应变曲线

Fig.6  

实验检测和模拟42CrMo车轮表面的水冷过程温度变化结果对比

Fig.7  

根据实验数据反推计算的水冷界面换热系数

Fig.8  

4种模型的Mises淬火应力对比

Fig.9  

4种模型径向淬火应力对比

Fig.10  

4种模型周向淬火应力对比

Fig.11  

4种模型轴向淬火应力对比

Fig.12  

Model-10ma应力分布场分布

Fig.13  

缺陷区域周向应力分布

[1] Li B. Master Thesis, Shanghai Jiaotong University, 2007
(李 波. 上海交通大学硕士学位论文, 2007)
[2] Gong B Z.Hoisting Conveying Mach, 2002; (2): 9
(宫本智. 起重运输机械, 2002; (2): 9)
[3] Zhang Q F.Hoisting Conveying Mach, 2011; (3): 26
(张全福. 起重运输机械, 2011; (3): 26)
[4] Quan G Z, Li G S, Chen T, Wang W X, Zhang Y W, Zhou J. Mater Sci Eng, 2011; A528: 4643
[5] Holzapfel H, Schulze V, Vӧhringer O, Macherauch E.Mater Sci Eng, 1998; A248: 9
[6] Sarioglu F.Mater Sci Eng, 2001; A315: 98
[7] Lin Y C, Chen M S, Zhong J. Mech Res Commun, 2008; 35: 142
[8] Liu D Z, Li T F, Yang H.Heat Treat Technol Equip, 2008; 29(3): 74
(刘多智, 李廷峰, 杨 慧. 热处理技术与装备, 2008; 29(3): 74)
[9] Gu J J, Qin Y Q, Chen Z L, Lu Q H.Hot Working Technol, 2010; 39(22): 160
(顾俊杰, 秦优琼, 陈志林, 卢庆华. 热加工工艺, 2010; 39(22): 160)
[10] Chu J H, Liu S Y.Heavy Castings Forgings, 2007; (4): 6
(褚锦辉, 刘时雨. 大型铸锻件, 2007; (4): 6)
[11] Wang M L, Wang J, Wang L X.Bearing, 2009; (12): 37
(王明礼, 王 建, 王丽霞. 轴承, 2009; (12): 37)
[12] Li J, Chen Z W, Liu D K.Heavy Castings Forgings, 2000; (4): 25
(李 进, 陈增武, 刘定坤. 大型铸锻件, 2000; (4): 25)
[13] Wang X T, Yao Y L, Shao T H.Acta Metall Sin,1990; 26: 40
(王笑天, 姚引良, 邵谭华. 金属学报, 1990; 26: 40)
[14] Dhua S K, Ray A, Sarma D S. Mater Sci Eng, 2001; A318: 197
[15] Liu D Y, Xu H, Yang K, Bai B Z, Fang H S. Acta Metall Sin, 2004; 40: 882
(刘东雨, 徐 鸿, 杨 昆, 白秉哲, 方鸿生. 金属学报, 2004; 40: 882 )
[16] Gao G H, Zhang H, Bai B Z.Acta Metall Sin, 2011; 47: 513
(高古辉, 张 寒, 白秉哲. 金属学报, 2011; 47: 513)
[17] Zhang C Y, Wang Q F, Ren J X, Li R X, Wang M Z, Zhang F C, Yan Z S.Mater Des, 2012; 36: 220
[18] Zhang P, Zhang F C, Wang T S.Acta Metall Sin, 2011; 47: 1038
(张 朋, 张福成, 王天生. 金属学报, 2011; 47: 1038)
[19] Wang R F, Xu K, Xue G.Hot Work Technol, 2007; 36(16): 43
(王仁甫, 徐 科, 薛 钢. 热加工工艺, 2007; 36(16): 43)
[20] Bakhtiari R, Ekrami A.Mater Sci Eng, 2009; A525: 159
[21] Jiang W C, Gong J M, Chen H, Tu S D. Acta MetallSin, 2008; 44: 105
(蒋文春, 巩建明, 陈 虎, 涂善东. 金属学报, 2008; 44: 105)
[22] Cao P Z, Liu G Z, Wu K.Int J Mater Mech Eng, 2012; (1): 16
[23] Yang X W, Zhu J C, Nong Z S, Lai Z H, He D.Comput Mater Sci, 2013; 69: 396
[24] Caner Simsir, Hakan Gur C.J Mater Process Technol, 2008; 207: 211
[25] Simulia Abaqus User Manual Version 6. 10, 2009
[26] Chen J D, Mo W L, Wang P, Lu S P.Acta Metall Sin, 2012; 48: 1186
(陈俊丹, 莫文林, 王 培, 陆善平. 金属学报, 2012; 48: 1186)
[27] Cheng B S, Xiao N M, Li D Z, Li Y Y.Acta Metall Sin, 2012; 48: 696
(程柏松, 肖纳敏, 李殿中, 李依依. 金属学报, 2012, 48: 696)
[28] Yin Z X, Yu W C, Yao G, Yang Z G, Li S X, Ma C X.Iron Steel, 2002; 37(10): 52
(尹志新, 于维成, 姚 戈, 杨振国, 李守新, 马常祥. 钢铁, 2002; 37(10): 52)
[1] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[2] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[3] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[4] LU Chaoran, XU Le, SHI Chao, LIU Jinde, JIANG Weibin, WANG Maoqiu. Effect of Al on Hardenability and Microstructure of 42CrMo Bolt Steel[J]. 金属学报, 2020, 56(10): 1324-1334.
[5] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[6] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[7] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[8] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[10] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[11] Qingdong ZHANG,Xiao LIN,Qiang CAO,Xingfu LU,Boyang ZHANG,Shushan HU. Flatness Defect Evolution of Cold-Rolled High Strength Steel Strip During Quenching Process[J]. 金属学报, 2017, 53(4): 385-396.
[12] Yonghua RONG,Nailu CHEN. The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon[J]. 金属学报, 2017, 53(1): 1-9.
[13] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[14] Yongkui LI, Chunyi QUAN, Shanping LU, Qingyang JIAO, Shijian LI, Zhonghai SUN. STUDY ON SHAPE CORRECTION OF THE THIN PLATE OF TA15 TITANIUM ALLOY BY POST WELD HEAT TREATMENT[J]. 金属学报, 2016, 52(3): 281-288.
[15] Zhongyuan WANG,Jie HE,Baijun YANG,Hongxiang JIANG,Jiuzhou ZHAO,Tongmin WANG,Hongri HAO. LIQUID-LIQUID PHASE SEPARATION AND FORMA-TION OF TWO GLASSY PHASES IN Zr-Ce-Co-CuIMMISCIBLE ALLOYS[J]. 金属学报, 2016, 52(11): 1379-1387.
No Suggested Reading articles found!