Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1275-1280    DOI: 10.3724/SP.J.1037.2013.00241
Current Issue | Archive | Adv Search |
INFLUENCE OF DEFORMATION TEMPERATURE ON HOT DEFORMATION BEHAVIOR OF COLD SPRAYED 304 STAINLESS STEEL COATING MATERIAL
ZHU Chuanlin1), ZHANG Junbao2), CHENG Congqian1), ZHAO Jie1)
1) School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085
2) Baosteel Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900
Cite this article: 

ZHU Chuanlin, ZHANG Junbao, CHENG Congqian, ZHAO Jie. INFLUENCE OF DEFORMATION TEMPERATURE ON HOT DEFORMATION BEHAVIOR OF COLD SPRAYED 304 STAINLESS STEEL COATING MATERIAL. Acta Metall Sin, 2013, 49(10): 1275-1280.

Download:  PDF(2134KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dense 304 stainless steel coating material was fabricated by cold spraying technology.The influence of deformation temperature on hot deformation behavior of cold sprayed 304 stainless steel coating material was investigated by thermo-mechanical simulator.The results showed that deformation resistance of cold sprayed 304 stainless steel coating material reduced with the increment of deformation temperature. The steady-state deformation resistance reduced from 315.4 MPa to 187.9 MPa when deformation temperature increased from 1000℃ to 1150℃ with deformation rate 20 s-1 and deformation reduction 17.5%. The microsturcture of deformation sample might be divided into easy, difficult and free deformation zones. The area of easy deformation zone increased and area of difficult deformation zone decreased when deformation temperature increased from 1000℃ to 1150℃. Recrystallization occurred at free deformation zone without cracking at 1150℃. DSC curve showed that phase transition of cold sprayed 304 stainless steel coating material occurred at 1237-1265℃. The microhardness of cold sprayed 304 stainless steel coating material was 313.3 HV0.2, which was relatively high. The microhardness of deformation samples reduced from 332.8 HV0.2 to 244.8 HV0.2 as the deformation temperature increased from 1000℃ to 1150℃ with deformation rate 20 s-1 and deformation reduction 50%. The hot temperature deformation equation of cold sprayed 304 stainless steel coating material was obtained with deformation temperature 1000-1150℃ and deformation rate 5-20 s-1. The value of hot temperature deformation activation energy was 464 kJ/mol under the deformation conditions.

Key words:  cold spraying      304 stainless steel      deformation temperature      hot deformation     
Received:  02 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00241     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1275

[1] Stoltenhoff T, Kreye H, Richter H J.  J Therm Spray Technol, 2002; 11: 542

[2] Dykhuizen R C, Smith M F.  J Therm Spray Technol, 1998; 7: 205
[3] Bu H Y, Lu C.  J Mater Eng, 2010; (1): 94
(卜恒勇, 卢晨. 材料工程, 2010; (1): 94)
[4] Li G, Zhou Y, Xue S, Wang H D.  Heat Treat Technol Equip, 2009; 30: 11
(李耿, 周勇, 薛飒, 王洪铎. 热处理技术与装备, 2009; 30: 11)
[5] Li W Y, Li C J.  Chin Surf Eng, 2002; (1): 12
(李文亚, 李长久. 中国表面工程, 2002; (1): 12)
[6] Gartner F, Stoltenhoff T, Schmidt T, Kreye T.  J Therm Spray Technol, 2006; 15: 223
[7] Meng X M, Zhang J B, Han W, Zhao J.  Appl Surf Sci, 2011; 258: 700
[8] Zhang H B, Zhang J B, Liang Y L, Song H W.  Baosteel Technol, 2009; (1): 46
[9] Stoltenhoff T, Borchers C, Grtner F, Kreye T.  Surf Coat Technol, 2006; 200: 4947
[10] Jing Y A, Wang C Y.  J Anshan Univ Sci Technol, 2007; 30: 590
(井玉安, 王晨宇. 鞍山科技大学学报, 2007; 30: 590)
[11] Ding H M, Fan X L, Wang J F.  Trans Mater Heat Treat, 2011; 32: 18
[12] Ni H W, Gao J, Tang L M.  Spec Steel, 2002; 23(3): 4
(倪红卫, 高娟, 唐利民. 特殊钢, 2002; 23(3): 4)
[13] Ramazan K, Mustafa A.  J Mater Process Technol, 2004; 152: 91
[14] Zhang S H, Sun Y, Zhang D M, Shi Q N.  J Mater Process Technol, 1997; 63: 370
[15] Song R B, Kang Y L, Zhao A M.  J Mater Process Technol, 2008; 198(1-3): 291
[16] Tsay L W, Lin Y J, Chen C.  Corros Sci, 2012; 63: 267
[17] Meng X M, Zhang J B, Zhao J, Liang Y L, Zhang Y J.  J Mater Sci Technol, 2011; 27: 809
[18] Spencer K, Zhang M X.  Surf Coat Technol, 2011; 205: 5135
[19] Xiong J Q, Xie G, Tang G B. Yunnan Metall, 2008; 32(5): 37
(熊家强, 谢刚, 唐广波. 云南冶金, 2008; 32(5): 37)
[20] Dehghan M A, Barnett M R, Hodgsonb P D.  Mater Sci Eng, 2008; A485: 664
[21] Taylor A S, Hodgson P D.  Mater Sci Eng, 2011; A529: 164
[22] Momeni A, Dehghani K, Keshmiri H, Ebrahimic G R.  Mater Sci Eng, 2010; A527: 1605
[23] Borchers C, Schmidt T, Gartner F, Kreye T.  Mater Sci Proc Appl Phys, 2008; 90A: 517
[24] Lv L H.  Principles of Metal Plastic Deformation and Rolling. Beijing: Chemical Industry Press, 2006: 39
(吕立华. 金属塑性变形与轧制原理. 北京: 化学工业出版社, 2006: 39)
[25] Zhao K W.  Master Thesis, Lanzhou University of Technology, 2010

(赵科巍. 兰州理工大学硕士学位论文, 2010)

[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[3] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[4] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
[5] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[6] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[7] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[8] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[9] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[10] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[12] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[13] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[14] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[15] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
No Suggested Reading articles found!