Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1145-1152    DOI: 10.11900/0412.1961.2015.00041
Current Issue | Archive | Adv Search |
EFFECT OF THERMAL BARRIER COATINGS ABOVE MOULD MENISCUS ON MOULD HEAT TRANSFER AND OSCILLATION MARK MORPHOLOGY OF STRANDS
Xiaoguang HOU1,2,Engang WANG1(),Xiujie XU1,Anyuan DENG1,Wanlin WANG3
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819
2 Baoshan Iron & Steel Co., Ltd., Shanghai 201900
3 School of Metallurgy and Environment, Central South University, Changsha 410083
Cite this article: 

Xiaoguang HOU,Engang WANG,Xiujie XU,Anyuan DENG,Wanlin WANG. EFFECT OF THERMAL BARRIER COATINGS ABOVE MOULD MENISCUS ON MOULD HEAT TRANSFER AND OSCILLATION MARK MORPHOLOGY OF STRANDS. Acta Metall Sin, 2015, 51(9): 1145-1152.

Download:  HTML  PDF(3511KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oscillation marks are closely related to the surface quality of bloom. Excellent surface quality of bloom is essential assurance of the technology of continuous casting and rolling. The improvement of heat transfer process through mold is beneficial to alleviate oscillation marks. A new method of inhibiting formation of oscillation marks in continuous casting, namely spraying or embedding thermal barrier coatings above mold meniscus (TBCMM) was proposed, by which the temperature and heat flux fluctuation of meniscus was reduced, and then the surface quality of strands was improved. Using an one-dimensional heat transfer simulating apparatus, the effect of location of thermal barrier coatings on heat transfer near meniscus was investigated, and the possible mechanism of TBCMM on inhibiting formation of oscillation marks was also discussed. With a dip simulator for continuous casting, lower melt point Sn-12.5%Pb alloy was casted with thermal barrier coating (TBC) and without TBC molds respectively, and the temperature fluctuation was also measured. The heat flux near meniscus in mold and the oscillation marks morphology on strands confirm the effectiveness of the proposed TBCMM. Finally, in a pilot continuous caster, casting experiments of steel with TBCMM was conducted, and the oscillation marks on billet surface were alleviated or removed.

Key words:  thermal barrier coating      continuous casting      meniscus      oscillation mark     
Fund: Supported by National Natural Science Foundation of China (Nos.50834009 and 51474065), Key Project of Ministry of Education of China (No.311014) and Program of Introducing Talents of Discipline to Universities (No.B07015)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00041     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1145

Fig.1  Schematic of 1D mold heat transfer measure device with infrared radiation heat source (BC—boundary condition)
Fig.2  Schematic of different positions of thermal barrier coating (TBC) on mold
Fig.3  Schematic of dip simulator mold and distribution of thermal couples
Fig.4  Schematic of pilot continuous caster mold with TBC
Fig.5  Effects of different positions of TBC on Cu mold responding temperature
Fig.6  Effects of different positions of TBC on Cu mold responding heat flux
Condition Rm mm2KW-1 Rs mm2KW-1 Rc mm2KW-1 Ri mm2KW-1 Rt mm2KW-1 A
No plating 0.0656 2.667 0.0 8.781 11.514 0.763
Hot side 0.0656 2.667 0.2 10.092 13.025 0.775
Meniscus 0.0656 2.667 0.2 12.957 15.890 0.815
Table 1  Heat resistance of Cu mold
Fig.7  Temperature evolution of selected responding temperatures in Sn-12.5%Pb alloy dip casting without (a) and with (b) TBC mold
Fig.8  Input heat flux curves in Sn-12.5%Pb alloy dip casting without and with TBC
Fig.9  Obtained samples in Sn-12.5%Pb alloy dip casting without (a) and with (b) TBC (d1 and d2—spacings between depression marks)
Fig.10  Schematic of effect of TBCMM on the forming mechanism of oscillation mark (NST—negative strip time, vc—casting speed)
Fig.11  Oscillation marks of steel continuous casting
[1] Brimacombe J K, Sorimachi K. Metall Trans, 1977; 8B: 489
[2] Mintz B. ISIJ Int, 1999; 39: 833
[3] Harada S, Tanaka S. ISIJ Int, 1990; 30: 310
[4] Hwang B, Lee H S, Kim Y G, Lee S. Mater Sci Eng, 2005; A402: 177
[5] Sengupta J, Thomas B G, Shin H J, Lee G G, Kim S H. Metall Trans, 2006; 37A: 1597
[6] Takeuchi E, Brimacombe J K. Metall Trans, 1985; 16B: 605
[7] Badri A, Natarajan T T, Snyder C C, Powers K D, Mannion F J, Cramb A W. Metall Trans, 2005; 36B: 360
[8] Badri A, Natarajan T T, Snyder C C, Powers K D, Mannion F J, Cramb A W. Metall Trans, 2005; 36B: 379
[9] Lei Z S, Ren Z M, Zhang B W, Deng K. Acta Metall Sin, 2002; 38: 8 (雷作胜, 任忠鸣, 张邦文, 邓 康. 金属学报, 2002; 38: 8)
[10] Gu K Z, Wang W L, Wei J, Matsuura H, Tsukihashi F, Sohn I, Dong J M. Metall Trans, 2012; 43B: 1393
[11] Gu K Z, Wang W L, Zhou L J, Ma F J, Huang D Y. Metall Trans, 2012; 43B: 937
[12] Zhou L J, Wang W L, Ma F J, Li J, Wei J, Matsuura H, Tsukihashi F. Metall Trans, 2012; 43B: 354
[13] Wang W L, Zhou L J, Gu K Z. Met Mater Int, 2010; 16: 913
[14] Wang W L, Gu K Z, Zhou L J, Ma F J, Sohn I, Min D J, Matsuura H, Tsukihashiet F. ISIJ Int, 2011; 51: 1838
[15] Wang W L, Cramb A W. AIST Trans, 2008; 5: 155
[16] Wang W L, Cramb A W. ISIJ Int, 2005; 45: 1864
[17] Zhang H H, Wang W L, Zhou D, Ma F J, Lu B X, Zhou L J. Metall Trans, 2014; 45B: 1038
[18] Zhou D, Wang W L, Zhang H H, Ma F J, Chen K, Zhou L J. Metall Trans, 2014; 45B: 1048
[19] Yin H B, Yao M. Acta Metall Sin, 2005; 41: 638 (尹合壁, 姚 曼. 金属学报, 2005; 41: 638)
[20] Wang X D, Zang X Y, Du F M, Kong L W, Yao M. Foundry Technol, 2014; 35: 1474 (王旭东, 臧欣阳, 杜凤鸣, 孔令伟, 姚 曼. 铸造技术, 2014; 35: 1474)
[21] Qing L J, Wang X R, Li J, Sun L G. Hebei Enterprise, 2013; (9): 90 (齐力军, 王鑫荣, 李 景, 孙立根. 河北企业, 2013; (9): 90)
[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[3] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[4] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[5] GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. 金属学报, 2021, 57(9): 1184-1198.
[6] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[7] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[8] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[9] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[10] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[11] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[12] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[13] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[14] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[15] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
No Suggested Reading articles found!