Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (11): 1382-1387    DOI: 10.3724/SP.J.1037.2011.00367
论文 Current Issue | Archive | Adv Search |
EXPERIMENTAL STUDY OF THE IMPACT FRACTURE BEHAVIOR OF FH550 OFFSHORE PLATFORM STEEL
ZHOU Yanlei, XU Yang, CHEN Jun, LIU Zhenyu
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

ZHOU Yanlei XU Yang CHEN Jun LIU Zhenyu. EXPERIMENTAL STUDY OF THE IMPACT FRACTURE BEHAVIOR OF FH550 OFFSHORE PLATFORM STEEL. Acta Metall Sin, 2011, 47(11): 1382-1387.

Download:  PDF(4564KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The impact fracture behavior of FH550 offshore platform steel was investigated by use of SEM, TEM and EDS. The experimental results show that the microstructure of as--rolled test steel is consist of low bainite and granular bainite, and tempered bainite is the main structure of this steel after tempering. The dimple fracture was observed on most of frature surfaces of samples, and and some inclusions, such as CaO and Al2O3, appear at the bottom of isometric dimples. Carbides inclusions more than 10 μm were found on the cleavage fracture surface of a few of samples which could aggravate the impact toughness, and result in the fluctuation of the impact energy as brittle particles. Micropore accumulating and growing and crack necking are the main way for propagation of cracks, however, shear crack propagation may be obstructed by the particle clusters generated during plastic deformation, increasing the crack propagation work. It is also found that the fraction of high angle grain boundaries is 79.3%, and the average grain size is 7.61 μm. High percentage of large angle grain boundaries and fine grain size are the key factors to obtain excellent impact toughness.
Key words:  FH550 offshore platform steel      impact toughness      high angle grain boundary      crack propagation      M-A island     
Received:  14 June 2011     
ZTFLH: 

TG115.5

 
Fund: 

Supported by High Technology Research and Development Program of China (No.2007AA03Z504)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00367     OR     https://www.ams.org.cn/EN/Y2011/V47/I11/1382

[1] Sun X J, Xu H Q, Li W S. Shandong Metall, 2009; 31(3): 11

(孙宪进, 徐洪庆, 李旺生. 山东冶金, 2009; 31(3): 11)

[2] Di G B, Liu Z Y, Hao L Q, Liu X H. Mater Mech Eng, 2008; 32(8): 1

(狄国标, 刘振宇, 郝利强, 刘相华. 机械工程材料, 2008; 32(8): 1)

[3] Lu Z X, Wang F C, Zhang Y Y, Guo A M. Res Iron Steel, 2005; 6: 17

(陆在学, 汪福成, 张云燕, 郭爱民. 钢铁研究, 2005; 6: 17)

[4] Nobuo S, Shinji M, Shigeru E. JFE Tech Rep, 2008; 11: 1

[5] Zhang X Z, Knott J F. Acta Mater, 1999; 47: 3483

[6] Chai F, Yang C F, Zhang Y Q, Xu Z. J Iron Steel Res, 2005; 17: 42

(柴锋, 杨才福, 张永权, 徐洲. 钢铁研究学报, 2005; 17: 42)

[7] Guo A M, Zou D H, Yi L X, Dong H X, Li P H, Liu K, Wu K M. Acta Metall Sin, 2009; 45: 390

(郭爱民, 邹德辉, 易伦雄, 董汉雄, 李平和, 刘 凯, 吴开明. 金属学报, 2009; 45: 390)

[8] Chen Y, Lambert S. Int J Fract, 2003; 124: 179

[9] Kunio T, Shimizu M, Yamada K, Suzuki H. Eng Fract Mech, 1975; 7: 411

[10] Yong Q L. Secondary Phases in Steels. Beijing: MetallurgicalIndustry Press, 2006: 27

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 27)

[11] Fang H S, Feng C, Zheng Y K, Zheng X H, Zhang C, Bai B Z. Acta Metall Sin, 2007; 43: 583

(方鸿生, 冯春, 郑燕康, 郑秀华, 张弛, 白秉哲. 金属学报, 2007; 43: 583)

[12] Cui Y X, Wang C L. Fracture Analysis. Harbin: Harbin Institute of Technology Press, 1998: 73

(崔约贤, 王常利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 73)

[13] Wang X S, Liang F, Zeng Y P, Xie X S. Acta Metall Sin, 2005; 41: 1272

(王习术, 梁锋, 曾燕屏, 谢锡善. 金属学报, 2005; 41: 1272)

[14] Beachem C D. Metall Trans, 1975; 6A: 377

[15] Schawlbe K. Eng Fract Mech, 1977; 9: 795

[16] David B. Elementary Engineering Fracture Mechanics. Netherlands: Martinus Nijhoff Publishers, 1986: 1

[17] Qiao Y, Argon A S. Mech Mater, 2003; 35: 313

[18] Qiao Y, Argon A S. Mech Mater, 2003; 35: 129
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[3] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[4] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[5] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[6] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[7] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[8] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[9] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[10] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[11] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[12] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
[13] Zhiqiang SHU,Pengbin YUAN,Zhiying OUYANG,Danmei GONG,Xueming BAI. Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo[J]. 金属学报, 2017, 53(6): 669-676.
[14] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[15] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
No Suggested Reading articles found!