Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 804-808    DOI: 10.3724/SP.J.1037.2011.00323
论文 Current Issue | Archive | Adv Search |
DEPOSITION MECHANISM OF PARTICLE-LIKE CORROSION PRODUCT IN TURBULENT DUCT
YAO Jun1, 2), Michael Fairweather2), LI Ning1)
1) School of Energy Research, Xiamen University, Xiamen 361005
2) School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK
Cite this article: 

YAO Jun Michael Fairweather LI Ning. DEPOSITION MECHANISM OF PARTICLE-LIKE CORROSION PRODUCT IN TURBULENT DUCT. Acta Metall Sin, 2011, 47(7): 804-808.

Download:  PDF(1025KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The deposition of corrosion products (particles) in cooling circuits of water-cooled nuclear reactors has been investigated using large eddy simulation and Lagrangian method (Reynolds number 2.5×105). A particle equation of motion including Stokes drag, lift, buoyancy and gravitational forces is used for particle trajectory analysis. The fluid-particle effect is considered and the particle-particle interact is ignored in this work. Results obtained from the fluid field calculation showed good agreement with experimental data and the predictions of direct numerical simulations. The particle size, drag force, shear-induced lift force and gravity all affected the particle deposition process. The small sized particles tended to deposite near the duct center while large sized particles tended to deposite near the duct edge, which become more obvious with increasing particle size. Close to the bottom of the duct, the particle number density increased with particle size increasing, and a high concentration of large particles appeared in the region with flow velocities lower than the mean, while small particles distribute evenly throughout the flow.
Key words:  corrosion product      particle      large eddy simulation (LES)      deposition     
Received:  23 May 2011     
Fund: 

Supported by Science and Technology Planning Project of Fujian Province (No.2007H2002) and EPSRC(No.EP/C549465/1)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00323     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/804

[1] Comley G C W. Prog Nucl Energy, 1985; 16: 41

[2] Murray A P. Nucl Technol, 1986; 74: 324

[3] Hirschberg G, Baradlai P, Varga K, Myburg G, Schunk J, Tilky P, Stoddart P. J Nucl Mater, 1999; 265: 273

[4] Aizawa M, Chiba Y, Hosokawa H, Ohsumi K, Uchida S,

Ishizawa N. J Nucl Sci Technol, 2002; 39: 1041

[5] Lin C C. Prog Nucl Energy, 2009; 51: 207

[6] Germano M. J Fluid Mech, 1992; 238: 325

[7] Piomelli U, Liu J. Phys Fluids, 1995; 7: 839

[8] di Mare F, Jones W P. Int J Heat Fluid Flow, 2003; 24: 606

[9] Rhie C M, Chow W L. AIAA J, 1983; 21: 525

[10] Choi H, Moin P. J Comput Phys, 1994; 13: 1

[11] Yao J, Zhao Y L, Hu G L, Fan J R, Cen K F. Aerosol Sci Technol, 2009; 43: 174

[12] Saffman P G. J Fluid Mech, 1965; 22: 385

[13] Saffman P G. J Fluid Mech, 1968; 31: 624

[14] Mei P. Int J Multiphas Flow, 1992; 18: 145

[15] Yao J, Zhang Y, Wang C H, Matsusaka S, Masuda H. Ind Eng Chem Res, 2004; 43: 7181

[16] Yao J, Zhang Y, Wang C H, Liang C Y. AIChE J, 2006; 52: 3775

[17] Armenio V, Fiorotto V. Phys Fluids, 2001; 13: 2437

[18] Gessner F B, Emery A F. J Fluid Eng, 1981; 103: 445

[19] Gessner F B, Po J K, Emery A F. In: Durst F, Launder B E, Schmidt F W, eds., Measurements of Developing Turbulent Flow in a Square Duct. Berlin: Springer Verlag, 1979: 279

[20] Pan Y, Banerjee S. Phys Fluids, 1996; 8: 2733

[21] Pedinotti S, Mariotti G, Banerjee S. Int J Multiphas Flow, 1992; 18: 927

[22] Eaton J K, Fessler J R. Int J Multiphas Flow, 1994; 20: 169

[23] Zhang H F, Ahmadi G. J Fluid Mech, 2000; 406: 55
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[3] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[4] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[5] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[6] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[7] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[8] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[9] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[10] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[11] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[12] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[13] GUO Yujing, BAO Haoming, FU Hao, ZHANG Hongwen, LI Wenhong, CAI Weiping. Ultrasonic Emulsification Preparation of Metallic Rubidium Sol and Its Ignition Performance[J]. 金属学报, 2022, 58(6): 792-798.
[14] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[15] GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt[J]. 金属学报, 2022, 58(10): 1292-1304.
No Suggested Reading articles found!