Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 784-789    DOI: 10.3724/SP.J.1037.2011.00312
论文 Current Issue | Archive | Adv Search |
ANALYSIS AND VALIDATION OF PIPE WALL THINNING DUE TO FLOW ACCELERATED CORROSION
Masanori Naitoh1),  CHEN Yaodong2) , Shunsuke Uchida1),  Hidetoshi Okada1)
1) The Institute of Applied Energy, Tokyo 105-0003, Japan
2) China Nuclear Power Engineering Co. Ltd., Beijing 100840
Cite this article: 

Masanori Naitoh CHEN Yaodong Shunsuke Uchida Hidetoshi Okada. ANALYSIS AND VALIDATION OF PIPE WALL THINNING DUE TO FLOW ACCELERATED CORROSION. Acta Metall Sin, 2011, 47(7): 784-789.

Download:  PDF(2222KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Flow accelerated corrosion (FAC) is one of phenomena which are challenging safety operation of power plant. The mechanism and dominant factor contributing to its ocurrence are illustrated. In parrallel, a dedicated FAC simulation code package, DRAWTHREE, its physical models and structure, as well as methodology and procedure for FAC and wall thinning evaluation are introduced. The code is then applied to the simulation of FAC and prediction of wall thinning rate, and the simulated results agree well with experimental and plant measured data. Finally, some countermeasures against FAC for different types of power plant are proposed.
Key words:  flow accelerated corrosion (FAC)      wall thinning      electrochemistry      double oxide layer      evaluation program DRAWTHREE     
Received:  17 May 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00312     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/784

[1] Nuclear and Industrial Safety Agency. Secondary Piping Rupture Accident at Mihama Power Station, Unit 3 of the Kansai Electric Power Co., Inc. (Final report), Rev.1, Nuclear and Industrial Safety Agency: Tokyo, Japan, 2005: 1

[2] Czajkowski C Z. Metallurgical Evaluation of an 18 inch Feedwater Line Failure at the Surry Unit 2 Power Station, NUREG/CR–4868, BNL–NUREG–52057, Brookhaven National Laboratory, 1987: 1

[3] Uchida S, Naitoh M, Uehara Y, Okada H, Hiranuma N, Sugino W, Koshizuka S. Power Plant Chem, 2008; 11–12: 704

[4] Naitoh M, Uchida S, Koshizuka S, Ninokata H, Hiranuma N, Dosaki K, Nishida K, Akiyama M, Saitoh H. J Nucl Sci Technol, 2008; 45: 1116

[5] Uchida S, Naitoh M, Uehara Y, Okada H, Hiranuma N, Sugino W, Koshizuka S. J Nucl Sci Technol, 2008: 45: 1275

[6] Uchida S, Naitoh M, Uehara Y, Okada H, Hiranuma N, Sugino W, Koshizuka S, Lister D H. J Nucl Sci Technol, 2009; 46: 31

[7] Uchida S, Naito M, Uehara Y, Okada H, Koshizuka S, Lister D H. Proc 14th Int Conf Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, VA, Virginia Beach: ANS, 2009: 973

[8] Uchida S, Naitoh M, Uehara Y, Okada H, Ohira T, Takiguchi H, Sugino W, Koshizuka S. J Nucl Sci Technol, 2010; 47: 184

[9] Naitoh M, Uchida S, Uehara Y, Okada H, Koshizuka S. Proc ASME PVP2010, Bellevue, WA, USA, July 18–22, Paper PVP2010–25517, 2010: 887

[10] Tsuruta T, Murata K, Shoda Y, Yamamoto K. Proc Fontevraud 6 Contribution of Material Investigation to Improve the Safety and Performance of LWRs, Vol.1, session A, Fontevraud, France: French Nuclear Energy Society, 2006: 181

[11] Heitmann H G, Schub P. Proc Int Conf Water Chemistry of Nuclear Reactor Systems 3, Bournemouth, UK: British Nuclear Energy Society, 1983: 243

[12] Fujiwara K, Domae M, Ohira T, Hisamuna K, Takiguchi H, Uchida S, Lister D H. Proc 16th Pacific Basin Nuclear Conference, Paper ID P16, Aomori, Japan: Atomic Energy Society of Japan, 2008: 1048

[13] Uchida S, Naitoh M, Okada H, Taku O, Koshizuka S. Proc Int Conf Water Chemistry of Nuclear Reactor Systems, NPC 2010, Quebec, Canada, October 3–7, 2010, Paper 4.02

[14] Uchida S, Naitoh M, Okada H, Taku O, Koshizuka S, Lister D H. Power Plant Chem, 2010; 12: 550

[15] Naitoh M, Uchida S, Uehara Y. Proc ASME PVP2009, Praque, Czech Republic, July 26–30, Paper PVP2009– 77583, 2009: 887

[16] Naitoh M, Uchida S, Okada H, Taku O, Koshizuka S. Proc 8th Int Topical Mtg Nuclear Thermal–Hydraulics, Operation and Safety (NUTHOS–8), Shanghai, China, October 10–14, 2010, Paper N8P0060

[17] Dooley R B. Power Plant Chem, 2008; 10: 68

[18] Naitoh M, Uchida S, Uehara Y. Proc 7th Int Topical Mtg Nuclear Reactor Thermal Hydraulics, Operation and Safety, Seoul, Korea, October 5–9, 2008, Paper 178

[19] Atomic Energy Society of Japan. Handbook of Water Chemistry of Nuclear Reactor Systems. Corona Publishing Co.: Tokyo, Japan, 2000: 328
[1] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[2] Shaopeng QU, Baizhang CHENG, Lihua DONG, Yansheng YIN, Lijing YANG. Corrosion Behavior of 2205 Steel in Simulated Hydrothermal Area[J]. 金属学报, 2018, 54(8): 1094-1104.
[3] Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. 金属学报, 2017, 53(7): 808-816.
[4] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
[5] Yongchang QING,Zhiwei YANG,Jun XIAN,Jin XU,Maocheng YAN,Tangqing WU,Changkun YU,Libao YU,Cheng SUN. CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS[J]. 金属学报, 2016, 52(9): 1142-1152.
[6] CAO Fengting, WEI Jie, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE[J]. 金属学报, 2014, 50(6): 674-684.
[7] YANG Yan, LI Zili, WEN Chuang. EFFECTS OF ALTERNATING CURRENT ON X70 STEEL MORPHOLOGY AND ELECTROCHEMICAL BEHAVIOR[J]. 金属学报, 2013, 49(1): 43-50.
[8] SHENG Hai, DONG Chaofang, XIAO Kui, LI Xiaogang. LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 414-419.
[9] SUN Min XIAO Kui DONG Chaofang LI Xiaogang. ELECTROCHEMICAL BEHAVIORS OF ULTRA HIGH STRENGTH STEELS WITH CORROSION PRODUCTS[J]. 金属学报, 2011, 47(4): 442-448.
[10] WANG Liwei DU Cuiwei LIU Zhiyong ZENG Xiaoxiao LI Xiaogang. INFLUENCES OF Fe3C AND PEARLITE ON THE ELECTROCHEMICAL CORROSION BEHAVIORS OF LOW CARBON FERRITE STEEL[J]. 金属学报, 2011, 47(10): 1227-1232.
[11] HAN En-Hou WANG Jianqiu WU Xinqiang KE Wei. CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2010, 46(11): 1379-1390.
[12] XU Qun-Jie. Photoelectrochemical Study of the Corrosion and Inhibition on Copper[J]. 金属学报, 2008, 44(11): 1360-1365 .
[13] WU Weitao; ZHANG Jianqing; ZENG Chaoliu; NIU Yan; SHEN weiliang (Institute of Corrosion and Protection of Metals; Corrosion Science Laboratory; Academia Sinica; Shenyang). HOT CORROSION OF Ni_3AI-0.2B INTERMETALLIC COMPOUND IN MOLTEN NaCI-(Na, K)_2SO_4[J]. 金属学报, 1992, 28(7): 60-64.
[14] YANG Qiqin;LIU Guankun;TONG Yexiang;LIANG Guangchao Zhongshan University; Guangzhou. ELECTROCHEMICAL ALLOYING OF Ni IN MOLTEN NaCl-KCl-PrCl_3[J]. 金属学报, 1992, 28(3): 65-68.
[15] ZHAO Ruirong;JIANG Hanying;QIN Yihong;ZENG Zhen'ou;YANG Jiyue Central South University of Technology; Changsha associate professor; Department of Chemistry;Central South University of Technology;Changsha 410083. ANODIC PROCESSES FOR ELECTROWINNING OF Sb FROM JAMESONITE CONCENTRATE[J]. 金属学报, 1990, 26(2): 88-92.
No Suggested Reading articles found!