Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (3): 275-283    DOI: 10.3724/SP.J.1037.2010.00485
论文 Current Issue | Archive | Adv Search |
CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
I. Experimental Result
LUO Liangshun1,2, ZHANG Yumin2, SU Yanqing1, WANG Xin1, GUO Jingjie1,FU Hengzhi 1
1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
2. National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Harbin Institute
of Technology, Harbin 150001
Cite this article: 

LUO Liangshun ZHANG Yumin SU Yanqing WANG Xin GUO Jingjie FU Hengzhi . CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
I. Experimental Result. Acta Metall Sin, 2011, 47(3): 275-283.

Download:  PDF(3936KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Systematic directional solidification experiments were conducted to investigate the convection effects on the banding structure evolution and macrosegregation in nonfaceted–non–faceted model Fe–Ni alloy using conventional resistance heating and induction heating Bridgman directional solidification methods in this paper. It was found that convection can induce severe axial and radial macrosegregation in the directionally solidified samples, and make the microstructures complex and mae the steady state difficult to achieve. Axiamacrosegregation was reflectein finite samples olidified from the beginning to the enof soidification with the transiion from primary phase to peritectic phase. The primary–peritectic transition depended on the alloy composition and convection strengh. Radial macrosegregation reflected in the solute concentration poor in the center and rich in edge, and a primary–peritectic transition also exist in the lateral directional from the sample to the edge.
Key words:  peritectic alloy      directional solidification      convection      segregation      banding structure     
Received:  19 September 2010     
ZTFLH: 

TG111.4

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50901025 and 50771041) and National Science Foundation for Post–doctoral Scientists of China (No.20090450840)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00485     OR     https://www.ams.org.cn/EN/Y2011/V47/I3/275

[1] Kerr H W, Kurz W. Int Mater Rev, 1996; 41: 129

[2] Johnson D R, Inui H, Yamaguchi M. Acta Mater, 1996;44: 2523

[3] Lapin J, Klimova A, Velisek R, Kursa M. Scr Mater, 1997; 37: 85

[4] Zhong H, Li S M, Lu H Y, Liu L, Zou G R, Fu H Z. J Cryst Growth, 2008; 310: 3366

[5] Li S M, Ma B L, L¨u H Y, Liu L, Fu H Z. Acta Metall Sin, 2005; 41: 411

(李双明, 马伯乐, 吕海燕, 刘林, 傅恒志. 金属学报, 2005; 41: 411)

[6] Nagashio K, Takamura Y, Kuribayashi K. Scr Mater, 1999; 41: 1161

[7] Liu Y C. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2000

(刘永长. 西北工业大学博士学位论文, 西安, 2000)

[8] Wang M. PhD Thesis, Northwestern Polytechnical University, Xi’an, 2002

(王猛. 西北工业大学博士学位论文, 西安, 2002)

[9] Fu H Z, Su Y Q, Guo J J, Xu D M. Acta Metall Sin, 2002; 38: 9

(傅恒志, 苏彦庆, 郭景杰, 徐达鸣. 金属学报, 2002; 38: 9)

[10] Dobler S, Lo T S, Plapp M, Karma A, Kurz W. Acta Mater, 2004; 52: 2795

[11] Su Y Q, Luo L S, Li X Z, Guo J J, Yang H M, Fu H Z. Appl Phys Lett, 2006; 89: 031918

[12] Trivedi R. Metall Trans, 1995; 26A: 1583

[13] Liu S, Trivedi R. Metall Trans, 2006; 37A: 3293

[14] Trivedi R, Shin J H. Mater Sci Eng, 2005; A413: 288

[15] Li X Z, Guo J J, Su Y Q, Wu S P, Fu H Z. Acta Metall Sin, 2005; 41: 593

(李新中, 郭景杰, 苏彦庆, 吴士平, 傅恒志. 金属学报, 2005; 41: 593)

[16] Guo J J, Li X Z, Su Y Q, Wu S P, Fu H Z. Acta Metall Sin, 2005; 41: 599

(郭景杰, 李新中, 苏彦庆, 吴士平, 傅恒志. 金属学报, 2005; 41: 599)

[17] Li S M, Liu L, Li X L, Fu H Z. Acta Metall Sin, 2004; 40: 20

(李双明, 刘林, 李晓历, 傅恒志.金属学报, 2004; 40: 20)

[18] Luo L S. PhD Thesis, Harbin Institute of Technology, 2008

(骆良顺. 哈尔滨工业大学博士学位论文, 2008)

[19] Karma A, Rappel W J, Fuh B C, Trivedi R. Metall Trans, 1998; 29A: 1457

[20] Luo L S, Su Y Q, Guo J J, Li X Z, Yang H M, Fu H Z. Appl Phys Lett, 2008; 92: 061903

[21] Xu X. Master Dissertation, Northwestern Polytechnical University, Xi’an, 2005

(许雄. 西北工业大学硕士学位论文, 西安, 2005)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[6] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[8] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[9] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[11] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[12] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[13] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[14] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[15] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
No Suggested Reading articles found!