Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (11): 1428-1442    DOI: 10.3724/SP.J.1037.2010.00487
论文 Current Issue | Archive | Adv Search |
INSIGHT FOR MICROSTRUCTURE RESEARCH OF MATERIALS
ZHU Jing1), YE Hengqiang2)
1) Beijing National Center for Electron Microscopy, Department of Material Science and Engineering, Tsing Hua University, Beijing 100084
2) Shenyang National Lab for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHU Jing YE Hengqiang. INSIGHT FOR MICROSTRUCTURE RESEARCH OF MATERIALS. Acta Metall Sin, 2010, 46(11): 1428-1442.

Download:  PDF(1421KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In matter science to observe the structure and to understand it's correlation with property in atomic scale is among the aims. Nano-science and technology, microminiaturization of IT devices, higher precision in advanced manufacture $etc$. play an important role to promote microscopic characterization to go deeply to atomic and even electronic level. Based upon the break-through of the aberration corrector the three functions of morphology observation, crystal structure determination and element analysis, provided by transmission electron microscope in recent years have expected to reach atomic resolution standard. Here we introduce the capabilities and prospects for microstructure characterization of materials with these new electron microscopes: (1) aberration-corrected electron microscopy (improving resolution; reducing delocalization effect; negative spherical aberration imaging; defocus-series processing images); (2) a high-resolution probe for imaging and spectroscopy; (3) three-dimensional atomic imaging; (4) interfaces in the complicated structure; (5) time resolution electron microscopy; (6) electron holography; (7) in situ electron microscopy with larger gap in pole piece.
Key words:  characterization      aberration-corrector      transmission electron microscopy     
Received:  19 September 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00487     OR     https://www.ams.org.cn/EN/Y2010/V46/I11/1428

[1] Li D X, Ping D H, Ye H Q, Qin X Y,Wu X J. Mater Lett, 1993; 18: 29 [2] Watanabe M, Ackland D W, Burrows A, Kiely C J, Williams D B, Krivanek O L, Dellby N, Murfitt M F, Szilagyi Z. Microsc Microanal, 2006; 12: 515 [3] Erni R, Browning N D. In: Tanaka N, Takano Y, Mori H, Seguchi H, Iseki S, Shimada H, Simamura E, eds., Proc Asia–Pacific Conference on Electron Microscopy (8 APEM), Kanazawa: 8 APEM Publication Committee, 2004: 130 [4] Seidel L. Astr Nachr, 1856; 43: 289 [5] Klein M V. Optics. Wiley, Chichester, Sussex, UK, 1970: 141 [6] Scherzer O. Z Phys, 1936; 101: 23 [7] Scherzer O. Optik, 1948; 4: 258 [8] Septier A. In: Valdre U, ed., Electron Microscopy in Material Science. Chapter 2, Academic Press New York and London, 1971: 14 [9] Krivanek O L, Ursin J P, Bacon N J, Corbin G J, Dellby N, Hrncirik P, Murfitt M F, Own C S, Szilagyi Z S. Philos Trans R Soc, 2009; 367A: 3683 [10] Rayleigh L. Philos Mag, 1879; 8: 463 [11] Haider M, Muller H, Uhlemann S, Zach J, Loebau U, Hoeschen R. Ultramicroscopy, 2008; 108: 167 [12] Haider M, Hartel P, M¨uller H, Uhlemann S, Zach J. Philos Trans R Soc, 2009; 367A: 3665 [13] Zach J, Haider M. Optik, 1995; 98: 112 [14] Dellby N, Krivanek O L, Nellist P D, Batson P E, Lupini R. JEM, 2001; 50(3): 177 [15] Krivanek O L, Corbin G J, Dellby N, Elston B F, Keyse R J, Murfitt M F, Own C S, Szilagyi Z S, Woodruff J W. Ultramicroscopy, 2008; 108: 179 [16] Erni R, Rossell M D, Kisielowski C, Dahmen U. Phys Rev Lett, 2009; 102: 096101 [17] Ling T, Xie L, Zhu J, Yu H M, Ye H Q, Yu R, Cheng Z Y, Liu L, Yang G W, Cheng Z D,Wang Y J, Ma X L. Nano Lett, 2009; 9: 1572 [18] Lu N, Yu R, Chen Z Y, Pai Y J, Zhang X W, Zhu J. Appl Phys Lett, 2010; 96: 221905 [19] Urban K W, Jia C L, Houben L, Lentzen M, Mi S B, Tillmann K. Philos Trans R Soc, 2009; 367A: 3735 [20] Houben L, Thust A, Urban K. Ultramicroscopy, 2006; 106: 200 [21] Coene W, Janssen G, Op de Beek M, Van Dyck D. Phys Rev Lett, 1992; 69: 3743 [22] OKeefe M A. Ultramicroscopy, 2008; 108: 196 [23] Muller D A, Kourkoutis L F, Murfitt M, Song J H, Hwang H Y, Silcox J, Dellby N, Krivanek O L. Science, 2008; 319: 1073 [24] Born Max, Wolf Emil. Translated by Yang X S et al. Principles of Optics. 5th Ed., Beijing: Science Press, 1978: 578 (Born Max, Wolf Emil 著; 杨葭荪 等译. 光学原理. 北京: 科学出版社, 1978: 578) [25] Dahmen U, Erni R, Radmilovic V, Ksielowski C, Rossell M D, Denes P. Philos Trans R Soc, 2009; 367A: 3795 [26] Chisholm M F, Kumar S, Hazzledine P. Science, 2005; 307: 701 [27] King W E, Cambell G H, Frank A, Reed B, Schmerge J F, Siwick B J, Staart B C, Weber P M. J Appl Phys, 2005; 97: 11110 [28] Masiel D J, Reed B W, LaGrange T B, Campbell G H, Guo T, Browning N D. Chem Phys Chem, 2010; 11: 208 [29] Gabor D. Nature, 1948; 161: 777 [30] Lichte H, Geiger D, Linck M. Philos Trans R Soc, 2009; 367A: 3773 [31] Ye H Q, Wang Y M. Progress in Transmission Electron Microscopy. Chapter B5, Beijing: Science Press, 2003: 217 (叶恒强, 王元明 主编. 透射电子显微学进展. 第B5章, 北京: 科学出版社, 2003: 217) [32] Lichte H, Formanek P, Lenk A, Linck M, Matzeck C, Lehmann M, Simon P. Annu Rev Mater Res, 2007; 37: 539 [33] McCartney M R, Agarwal N, Chung S, Cullen D A, Han M G, He K, Li L Y,Wang Ha, Zhou L, Smith D J. Ultramicroscopy, 2010; 110: 375
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[4] ZHANG Baicheng, ZHANG Wenlong, QU Xuanhui. Composition Design of Additive Manufacturing Materials Based on High Throughput Preparation[J]. 金属学报, 2023, 59(1): 75-86.
[5] CHEN Hongyu, SONG Xin, ZHOU Xianglong, JIA Wentao, YUAN Tao, MA Tianyu. Identification of 2:17R' Cell Edge Phase in Sm2Co17-Type Permanent Magnets by Transmission Electron Microscopy[J]. 金属学报, 2021, 57(12): 1637-1644.
[6] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[7] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[8] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[9] Gaohui WU, Jing QIAO, Longtao JIANG. Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites[J]. 金属学报, 2019, 55(1): 33-44.
[10] Xuexi ZHANG, Zhong ZHENG, Ying GAO, Lin GENG. Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 109-125.
[11] Xuemei XIANG, Yuxiang LAI, Chunhui LIU, Jianghua CHEN. Sn-Induced Modification of the Precipitation Pathways upon High-Temperature Ageing in an Al-Mg-Si Alloy[J]. 金属学报, 2018, 54(9): 1273-1280.
[12] Xiuliang MA, Xiaobing HU. High-Resolution Transmission Electron Microscopic Study of Various Borides Precipitated in Superalloys[J]. 金属学报, 2018, 54(11): 1503-1524.
[13] Junzhou CHEN, Liangxing LV, Liang ZHEN, Shenglong DAI. Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS[J]. 金属学报, 2017, 53(8): 897-906.
[14] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
[15] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
No Suggested Reading articles found!