Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 404-410    DOI: 10.3724/SP.J.1037.2009.00650
论文 Current Issue | Archive | Adv Search |
GRAIN BOUNDARY PLANE DISTRIBUTIONS IN THE COLD–ROLLED AND ANNEALED FERRITIC STAINLESS STEEL
FANG Xiaoying 1; WANG Weiguo 1; Rohrer G S 2; ZHOU Bangxin 3
1. School of Mechanical Engineering; Shandong University of Technology; Zibo 255049
2. Materials Science and Engineering Department; Carnegie Mellon Univeristy; Pittsburgh; PA 15213; USA
3. Institute for materials; School of Materials Science and Engineering; Shanghai University; Shanghai 200072
Cite this article: 

FANG Xiaoying WANG Weiguo Rohrer G S ZHOU Bangxin. GRAIN BOUNDARY PLANE DISTRIBUTIONS IN THE COLD–ROLLED AND ANNEALED FERRITIC STAINLESS STEEL. Acta Metall Sin, 2010, 46(4): 404-410.

Download:  PDF(4936KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The grain boundary plane distribution in the cold–rolled and annealed ferritic stainless steel has been analyzed statistically by a five–parameter method based on the mis–orientations of adjacent grains and the orientations of grain boundary traces determined by electron backscatter diffraction (EBSD) attached to a field emission scanning electron microscope (FE–SEM). The results show that no preferred texture occurrs either in grain orientations or grain boundary mis–orientations characterized by axis–angle pairs in the specimens which were cold rolled by 85% reduction in thickness and subsequently annealed at 780 ℃. However, there are developed textures for the orientations of grain boundary planes. And also, the preferred planes vary with averaged grain size levels. At the level of 9 μm, grain boundary planes favor the {100} orientation, with their density distribution 12% higher than a random distribution; Whereas at the level of 15 μm, {111} planes are preferred and {100} and {112} planes are sub–preferred, with the density distribution on {111} about 10% higher than a random distribution. Moreover, the anisotropy of grain boundary plane distributions is larger at specific mis–orientations. The discussion points out the preferred grain boundary planes might possess lwer energes and tend to being preserved due to their lower growth rates during annealing.

Key words:  ferritic stainless steel      grain boundary plane distribution      grain boundary misorientation      EBSD     
Received:  25 September 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50771060 and 50974147)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00650     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/404

[1] Chadwick G A, Smith D A. Grain Boundary Tructure and Properties. London: Academic Press, 1976: 201
[2] Humphreys F J. Recrystallization & Related Annealing Phenomena. Oxford; Elsevier Ltd, 2004: 91
[3] Watanabe T. Res Mech, 1984; 11: 47
[4] Palumbo G, Lehockey E M, Lin P. JOM, 1998; 40: 50
[5] Cheung C, Erb U, Palumbo G. Mater Sci Eng, 1994; A185:39
[6] Lehockey E M, Palumbo G, Lin P. Metall Mater Trans, 1998; 29A: 3069
[7] Wang W G, Guo H. Mater Sci Eng, 2007; A445–446: 155
[8] Wang W G, Yin F X, Guo H, He L, Zhou B X. Mater Sci Eng, 2008; A491: 199
[9] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7
[10] Wang W G, Zhou B X, Feng L. Acta Metall Sin, 2006; 42: 715
(王卫国, 周邦新, 冯 柳. 金属学报, 2006; 42: 715)
[11] Fang X Y, Wang W G, Guo H, Zhang X, Zhou B X. Acta Metall Sin, 2007; 43: 1239
(方晓英, 王卫国, 郭 红, 张 欣, 周邦新. 金属学报, 2007; 43: 1239)
[12] Lin P, Palumbo G, Erb U. Scr Mater Mater, 1996; 33: 1387
[13] Shimada M, Kokawa H, Wang Z J. Acta Mater, 2002; 50: 2331
[14] Lehoceky E M, Palumbo G, Lin P. Metall Mater Trans, 1998; 29A: 3069
[15] Palumbo G, Erb U. MRS Bull, 1999; 24: 27
[16] Watanabe T, Yamada M, Shimada S, Karashima S. Philos Mag, 1979; 40A: 667
[17] Bouchet D, Priester L. Scr Mater, 1987; 21: 475
[18] Fang X Y, Wang W G, Guo H, Zhang X, Zhou B X. J Iron Steel Res, 2007; 14: 339
[19] Fang X Y, Wang W G, Qin C X, Zhou B X. Int J Mod Phys, 2009; 23B: 1110
[20] Randle V. The Role of Coincidence Site Lattice in Grain Boundary Engineering. London: Carlton House Terrace, 1999: 123
[21] Wright S I, Larsen R J. JOM, 2002; 205: 245
[22] Randle V. Scr Mater, 2001; 44: 2789
[23] Rohrer G S, Sayor D M, Dasher B E, Adams B L. Z Metall, 2004; 95: 197
[24] Sayor D M, Dasher B E, Adams B L, Rohrer G S. Metall Mater Trans, 2004; 35A: 1981
[25] Randle V, Jones R. Mater Sci Eng, 2009; A524: 134
[26] Kim C S, Hu Y, Rohrer G S, Randle V. Scr Mater, 2005; 52: 633
[27] Sayor D M, Dasher B E, Rollett A D, Rohrer G S. Acta Mater, 2004; 52: 3649
[28] Rohrer G S, Randle V, Kim C S, Hu Y. Acta Mater, 2006; 54: 4489
[29] Kim C S, Hu Y, Rohrer G S, Randle V. Scr Mater, 2005; 52: 633
[30] Sayor D M, Morawiec A, Rohrer G S. Acta Mater, 2003; 51: 3663
[31] Sayor D M, Morawiec A, Rohrer G S. Acta Mater, 2003; 51: 3675
[32] Randle V, Rohrer G S, Hu Y. Scr Mater, 2008; 58: 183
[33] Sayor D M, Dasher B E, Sano T, Rohrer G S. J Am Ceram Soc, 2004; 87: 670
[34] Wang W G. Chin J Stereology Image Anal, 2007; 12(4): 239
(王卫国. 中国体视学与图像分析, 2007; 12(4): 239)
[35] Bennett T A, Kim C S, Rohrer G S, Rollett A D. Mater Sci Forum, 2004; 467–470: 727
[36] Lejcek P, Hofmann S, Paidar V. Acta Mater, 2003; 51: 3951
[37] Lejcek P, Paidar V. Mater Sci Technol, 2005; 21: 393

[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[4] WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel[J]. 金属学报, 2020, 56(2): 129-136.
[5] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[6] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[7] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[8] Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. 金属学报, 2018, 54(6): 877-885.
[9] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[10] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[11] Yang XU,Siqian BAO,Gang ZHAO,Xiangbin HUANG,Rusheng HUANG,Bingbing LIU,Nana SONG. Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing[J]. 金属学报, 2017, 53(5): 539-548.
[12] Lina WANG,Ping YANG,Weimin MAO. ANALYSIS OF MARTENSITIC TRANSFORMATIONDURING TENSION OF HIGH MANGANESETRIP STEEL AT HIGH STRAIN RATES[J]. 金属学报, 2016, 52(9): 1045-1052.
[13] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[14] Jixiang CHEN,Weiguo WANG,Yan LIN,Chen LIN,Qianting WANG,Pinqiang DAI. GRAIN BOUNDARY PLANE DISTRIBUTIONS IN RECRYSTALLIZED HIGH PURITY Al AFTER A PARALLEL PROCESSING OF EQUAL CHANNEL ANGULAR PRESSING AND DIRECT ROLLING[J]. 金属学报, 2016, 52(4): 473-483.
[15] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
No Suggested Reading articles found!