Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (3): 318-323    DOI: 10.3724/SP.J.1037.2009.00590
论文 Current Issue | Archive | Adv Search |
EFFECT OF C DOPING ON He BEHAVIOR IN Al
XIANG Xin1); CHEN Chang'an1;2); LIU Kezhao1;2); LUO Lizhu2); LIU Tingting2); WANG Xiaoying2)
1) China Academy of Engineering Physics; Mianyang 621900
2) National Key Laboratory for Surface Physics and Chemistry; Mianyang 621700
Cite this article: 

XIANG Xin CHEN Chang'an LIU Kezhao LUO Lizhu LIU Tingting WANG Xiaoying. EFFECT OF C DOPING ON He BEHAVIOR IN Al. Acta Metall Sin, 2010, 46(3): 318-323.

Download:  PDF(1030KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It has been verified that He embrittlement in metals could be suppressed by proper additions of alloying elements, and this effect is related to highly dispersive secondary phase precipitated in the matrix. Effect of C doping on ion implantated He behavior in Al has been investigated by XPS, XRD, TEM and SEM. It was found that the secondary phase precipitated in the surface of Al doped with C is Al4C3. With the increase of the dose of C, the volume of Al unit cell increased, and the preferred orientation of Al surface changed from (100 to (111), which will affect the He behavior in Al. The pre-doped C played an important role in the Al surface blistering induced by He ion implantation, and the extent is dependent on the dose of pre-doped C. When the Al sample was pre-doped by C with smaller fluence (≦5.0×1020 ions/m2), the growth of blisterings is suppressed effectively, and the surface blisterings are distributed more uniformly. However, when pre-doped C has larger fluence (≧1.0×1021 ions/m2), the suppression effect of C on surface blistering would be reduced, and even the irradiation damage of He ions (voids and flakings) would appear in the surface. The effect of C doping on the microstructure in Al was also observed.

Key words:  Al      C doping      He behavior      blistering      microstructure     
Received:  08 September 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50671017)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00590     OR     https://www.ams.org.cn/EN/Y2010/V46/I3/318

[1] Robinson S L. Mater Sci Eng, 1987; 96: 7
[2] Robinson S L, Thomas G J. Metall Mater Trans, 1991; 22A: 879
[3] Matta M K, Kesternich W. Bull Mater Sci, 1990; 13: 313

[4] Rajaraman R, Amarendra G, Viswanathan B, Sundar C S, Gopinathan K P. J Nucl Mater, 1996; 231: 55
[5] Yamamoto N, Nagakawa J, Shiraishi H. J Nucl Mater, 1995; 226: 185
[6] Zhang C H, Jang J S, Yang Y T, Song Y, Sun Y M, Cho H D, Jin Y F. Chin Sci Bull, 2008; 53: 3416
[7] Wright R N, Van siclen C D, Usmar S G, Mochel M E. J Nucl Mater, 1991; 182: 281
[8] Kamigaki N, Furuno S, Hojou K, Ono K, Hashioto E, Izui K, Kino T. J Nucl Mater, 1992; 191–194: 1214
[9] Xiang X, Chen C A, Liu K Z, Peng L X, Rao Y C. Rare Met, 2009; 33: 510
(向鑫, 陈长安, 刘柯钊, 彭丽霞, 饶咏初. 稀有金属, 2009; 33: 510)

[10] Weast R C. Handbook of Chemistry and Physics. 64th Ed., New York: CRC Press, 1985: 54
[11] Streletskii A N, Povstugar I V, Borunova A B, Lomaeva S F, Butyagin P Yu. Colloid J, 2006; 68: 470
[12] Zhang W F, Li J R. Surf Technol, 2009; 38: 33
(张文峰, 李建蓉. 表面技术, 2009; 38: 33)

[13] Huang M D, Sun C, Lin G Q, Dong C, Wen L S. Acta Metall Sin, 2003; 39: 516
(黄美东, 孙超, 林国强, 董闯, 闻立时. 金属学报, 2003; 39: 516)

[14] Wilson K L, Thomas G J. J Nucl Mater, 1976; 63: 266
[15] Fukahiro T, Kanda Y, Mori K, Tobimatsu H. J Nucl Mater, 1985; 133–134: 277
[16] Li Y L, Meng J L, Wei X Z. South Chin Univ Technol
(李友麟, 蒙继龙, 魏兴钊. 华南理工大学学报(自然学科版), 1989; 17: 60)

[17] Kalashnikov A N, Chernov I I, Kalin B A, Binyukova S Y. J Nucl Mater, 2002; 307–311: 362
[18] Kesternich W. Radiat Eff, 1983; 78: 261
[19] De waard H, Pleiter F, Boerma D O, Niesen L, Zhang G L. Nucl Iustr Meth Phys Res, 1983; 209–2l0: 899

[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[9] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[15] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
No Suggested Reading articles found!