Please wait a minute...
Acta Metall Sin  1989, Vol. 25 Issue (6): 37-42    DOI:
Current Issue | Archive | Adv Search |
LOW CYCLE FATIGUE OF Cr-Mn-N STAINLESS STEEL
XIA Yuebo;WANG Zhongguang Institute of Metal Research; Academia Sinica; Shenyang XIA Yuebo; associate professor; Institute of Metal Research; Academia Sinica;Shenyang 110015
Cite this article: 

XIA Yuebo;WANG Zhongguang Institute of Metal Research; Academia Sinica; Shenyang XIA Yuebo; associate professor; Institute of Metal Research; Academia Sinica;Shenyang 110015. LOW CYCLE FATIGUE OF Cr-Mn-N STAINLESS STEEL. Acta Metall Sin, 1989, 25(6): 37-42.

Download:  PDF(932KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  An investigation was conducted to examine the symmetric lowcycle push-pull fatigue behaviour of the Cr-Mn-N dual-phase stainless steel whichwas separated into two specimen groups A and B by solution treated at 1050 and1250℃ respectively. The fatigue life of A is almost twice as long as B under sametotal amplitude of strain. Within the tested amplitude range of strain, ±0.4-±1.2%, the cyclic softening is observed both of them after the cycle saturated, whilethe saturation stage is earlier reached under lower amplitude of strain. The aver-age energy loss of each cycle increases and the sum of energy loss of total life ofeach specimen decreases with the increase of strain amplitude. Observation on thefatigue fracture surface under SEM shows that the specimen A is mixed type and thetransgranular mode predominantly with clear fatigue striation, and the specimen Bis mainly the intergranular mode.
Key words:  low cycle fatigue      fatigue life      hardening saturation      cyclic softening      energy loss     
Received:  18 June 1989     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1989/V25/I6/37

1 中国科学院金属研究所.Cr-Mn-N无镍不锈钢综合简介,金属研究所内部资料,1972
2 柴田浩司,名村夏树,岸本康夫,藤田利夫.铁钢,1983;69(16) :2076
3 Xia Y B (夏月波), Wang Z G (王中光). Phys Status Solidi, (a), 1987; 103: 389
4 Raske D T, Morrow J D. ASTM STP 465, 1969: 1
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[3] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[4] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[5] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[6] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[7] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[8] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[9] Jinlan AN,Lei WANG,Yang LIU,Guohua XU,Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2015, 51(7): 835-843.
[10] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[11] YU Huichen, DONG Chengli, JIAO Zehui, KONG Fantao, CHEN Yuyong, SU Yongjun. HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY[J]. 金属学报, 2013, 49(11): 1311-1317.
[12] XIONG Ying CHENG Lixia . MULTIAXIAL FATIGUE LIFE PREDICTION FOR EXTRUDED AZ31B MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(12): 1446-1452.
[13] CHEN Lijia WANG Xin ZHI Ying XU Yanwu. LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS[J]. 金属学报, 2009, 45(7): 856-860.
[14] HUANG Zhiwei; YUAN Fuhe; WANG Zhongguang; ZHU Shijie; WANG Fugang. Low Cycle Fatigue Behavior of A Cast Nickel Base Superalloy M963 at Elevated Temperature[J]. 金属学报, 2007, 43(7): 678-682 .
[15] . [J]. 金属学报, 2007, 43(10): 1025-1030 .
No Suggested Reading articles found!