Please wait a minute...
Acta Metall Sin  1991, Vol. 27 Issue (1): 61-67    DOI:
Current Issue | Archive | Adv Search |
ON THE THERMALLY ACTIVATED PLASTIC DEFORMATION OF 12Ni3CrMoVA STEEL
ZHU Dong;CAI Qigong Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing
Cite this article: 

ZHU Dong;CAI Qigong Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing. ON THE THERMALLY ACTIVATED PLASTIC DEFORMATION OF 12Ni3CrMoVA STEEL. Acta Metall Sin, 1991, 27(1): 61-67.

Download:  PDF(619KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The 12Ni3CrMoVA steel was selected to investigate the effect of tem-perature, strain rate and microstructure on yield strength of bcc metals. The therma-lly activated parameters, such as activation energy and volume, were measured andcalculated. According to the P-N mechanism, the plastic deformation of bcc metalswas analysed by the core structure of screw dislocation, the theoretical predictionwas in good agreement with experimental results. It is explained that the "turningpoint" in curve of effective stress against temperature was caused by a double cam-el-hnmp--shape of Peierls potential energy, which resulted in a new pair of doublekinks forming in the front of original one. The microstructure can only affect on athermal stress, but not affect on thermally activated movement of dislocation.
Key words:  activation      deformation      strain rate      dislocation     
Received:  18 January 1991     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1991/V27/I1/61

1 祝东.冶金工业部钢铁研究总院博士学位论文,1989
2 Nabarro F R N. Proc Phys Soc London, 1947; 59: 236
3 Chen Y T, Atteridge D G, Gerberich W W. Acta Metall, 1981; 29: 1171
4 Sinha T K, Chakravartty J K. Wadekar S L. Asundi M K. J Mater Sci, 1984; 19: 1446
Green A P, Hundy B. B. J Mech Phys Solids, 1956; 4: 128
6 Campbell J D, Perguson W G. Philos Mag. 1970; 21(169) : 63
7 Conrad H, Wiedersich H. Acta Metall, 1960; 8: 128
8 Petch N J. Acta Metall, 1987; 35: 2027
9 Conrad H. J Met, 1964; 16: 582
10 Takeuchi S. Kuramoto E. J Phys Soc Jpn, 1975; 38: 480
11 Takeuchi S. Philos Mag, 1979; 39A: 661
12 Dorn J E, Rajnak S. TMS AIME, 1964; 230: 1052q
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[12] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[13] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[14] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[15] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
No Suggested Reading articles found!