Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (5): 73-78    DOI:
Current Issue | Archive | Adv Search |
SCF FEATURE OF AUSTENITIC STAINLESS STEEL IN BOILING MgCl_2 SOLUTION
CHEN Liangshi;GAO Xuejie;FENG Tao;LIU Minzhi Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; Shenyang Correspondent professor; Institute of Corrosion and Protetion of Metals; Academia Sinica; Shenyang 110015
Cite this article: 

CHEN Liangshi;GAO Xuejie;FENG Tao;LIU Minzhi Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; Shenyang Correspondent professor; Institute of Corrosion and Protetion of Metals; Academia Sinica; Shenyang 110015. SCF FEATURE OF AUSTENITIC STAINLESS STEEL IN BOILING MgCl_2 SOLUTION. Acta Metall Sin, 1992, 28(5): 73-78.

Download:  PDF(2213KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Studies were carried out of the effect of mechanical parameters on theinteraction between stress corrosion cracking and corrosion fatigue, as well as of the featureof stress corrosion fatigue (SCF) on crack growth rate and fracture surface of 0Cr18Ni9Tisteel in boiling MgCl_2 solution. Any parameter, that increased the strain rate at crack tip,tends to promote the change of SCF from transgranular to intergranular mode.
Key words:  stress corrosion cracking      corrosion fatigue      crack growth rate      cracking mode      austenitic stainless steel     
Received:  18 May 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I5/73

1 高学杰.中国科学院金属腐蚀与防护研究所硕士学位论文,1987
2 冯淘,陈良爽,柯伟.金属学报,1990;26:B395
3 Parkins R N. ASTM STP 665, 1979:
[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[4] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[6] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[8] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[9] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[10] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[11] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[12] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[13] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[14] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[15] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
No Suggested Reading articles found!