Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (6): 33-39    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF SLIP ORIENTATION ON STRESS RESPONSE, INTERNAL FRICTION AND ULTRASONIC ATTENUATION DURING CYCLIC DEFORMATION IN Al SINGLE CRYSTALS
XIA Yuebo;ZHANG Tianyi;FEI Guangtao;ZHOU Xing State Key Laboratory for Fatigue and Failure of Materials; Institute of Metal Research; Academia Sinica; Shenyang Laboratory of Internal Friction and Defects in Solids; Institute of Solid State Physics; Academia Sinica; Hefei Correspondent associate professor; Insttitute of Metal Research; Academia Sinica; Shenyang 110015
Cite this article: 

XIA Yuebo;ZHANG Tianyi;FEI Guangtao;ZHOU Xing State Key Laboratory for Fatigue and Failure of Materials; Institute of Metal Research; Academia Sinica; Shenyang Laboratory of Internal Friction and Defects in Solids; Institute of Solid State Physics; Academia Sinica; Hefei Correspondent associate professor; Insttitute of Metal Research; Academia Sinica; Shenyang 110015. EFFECT OF SLIP ORIENTATION ON STRESS RESPONSE, INTERNAL FRICTION AND ULTRASONIC ATTENUATION DURING CYCLIC DEFORMATION IN Al SINGLE CRYSTALS. Acta Metall Sin, 1992, 28(6): 33-39.

Download:  PDF(623KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Studies were made of the variation of stress response, σ, internal friction, Q~(-1), and ultrasonic attenuation Aa, during cyclic deforamtion and correlation among them withdifferent slip orientation Al single crystals. Results indicate that they have obvious depen-dence upon slip orientation of Al single crystals. They are many differences for Q~(-1), △αand σbetween mono-slip and multi-slip Al single crystals. For the Al single crystals with sameorientation, the increase of σ corresponds with reduction of Q~(-1) and increase of △α, yet therequired number of cycles approaching the maximum of △α may be less than that of α up tomaximmu. And the Q~(-1) and σ may reach minimum and maximum, respectively, at samenumber of cycle.
Key words:  crystal orientaion      cyclic deformation      stress response      internal friction      ultrasonic attenuation     
Received:  18 June 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I6/33

1 Alden T. H, Backofen W A. Acta Metall, 1961; 9: 352
2 Xia Y. B., Wang Z. G. Wang R H, Phys Status Solidi, 1990; 120a 125
3 Liu Wei, Wang Zhongguang, Xia Yuebo, Phys Status Solidi, 1989 114a: 177
4 朱震刚,周星,费广涛,仪器仪表学报,1988;9:396
5 Nowick A S, Berry B S. Anelastic Reiaxation in Crystaline Solids. New York: Academic Press, 1972: 22, 26
6 Mnghrabi H. Mater Sci Eng, 1978; 33: 207
7 费广涛,中国科学院固体物研究所硕士学位论文,1991
8 Granato A, Luecke K. J Applphys, 1856; 27: 583{
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[3] LI Weijuan, ZHANG Hengyi, FU Hao, ZHANG Jianping, QI Xiangyu. INTERNAL FRICTION STUDY OF MECHANISM OF BAKE-HARDENING ON LOW CARBON STEEL[J]. 金属学报, 2015, 51(4): 385-392.
[4] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[5] ZHANG Siqian, WU Wei, CHEN Lili, CHE Xin, CHEN Lijia. INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY[J]. 金属学报, 2014, 50(6): 700-706.
[6] WANG Hua SHI Wen HE Yanlin FU Renyu LI Lin. STUDY OF Mn AND P SOLUTE DISTRIBUTIONS AND THEIR EFFECT ON THE TENSILE BEHAVIOR IN ULTRA LOW CARBON BAKE HARDENING STEELS[J]. 金属学报, 2011, 47(3): 263-268.
[7] CHEN Lijia WANG Xin ZHI Ying XU Yanwu. LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS[J]. 金属学报, 2009, 45(7): 856-860.
[8] JIANG Qingwei LIU Yin WANG Yao CHAO Yuesheng LI Xiaowu . MICROSTRUCTURAL INSTABILITY OF ULTRAFINE--GRAINED COPPER UNDER ANNEALING AND HIGH--TEMPERATURE DEFORMING[J]. 金属学报, 2009, 45(7): 873-879.
[9] WU Jie CUI Hongzhi CHI Jing YAO Shuyu HAN Fusheng. INTERNAL FRICTION PEAK IN B2 Fe--Al ALLOYS DURING ORDERING PROCESS[J]. 金属学报, 2009, 45(4): 396-399.
[10] Jian ZHANG. EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION[J]. 金属学报, 2008, 44(9): 1095-1098 .
[11] SUN Wei. The internal friction peak correlated to the relaxation of Al antisite atoms in Fe-Al alloys[J]. 金属学报, 2007, 43(3): 311-314 .
[12] ;. FINITE ELEMENT SIMULATION FOR CYCLIC DEFORMATION OF SiCP/6061Al ALLOY COMPOSITES[J]. 金属学报, 2006, 42(10): 1051-1055 .
[13] YAO Jun; GUO Jianting; YUAN Chao; LI Zhijun. Low Cycle Fatigue Behavior Of Cast Nickel Base Superalloy K52[J]. 金属学报, 2005, 41(4): 357-362 .
[14] YANG Jihong; ZHANG Xinping; Y. W. MAI; LI Yong. Simulation Of Internal~ Stresses~ Near The Surface And Fatigue Crack Nucleation For A Copper Single Crystal In Cyclic Deformation Saturation Stage[J]. 金属学报, 2005, 41(1): 9-.
[15] WANG Hongbin; WANG Xiaoyu; ZHANG Jihua; XU Zuyao T. Y. Hsu. Internal Friction of Nano--Grained Fe--25\%Ni Alloy Bulk[J]. 金属学报, 2004, 40(5): 523-526 .
No Suggested Reading articles found!