Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (4): 30-36    DOI:
Current Issue | Archive | Adv Search |
MICROSTRUCTURES OF Mg-Zr, Mg-Zn AND Mg-Zn-Zr ALLOYS
LUO Zhiping;ZHANG Shaoqing Institute of Aeronautical Materials; Beijing; China doctoral candidate;P.O. Box 81-4; Beijing 100095;China
Cite this article: 

LUO Zhiping;ZHANG Shaoqing Institute of Aeronautical Materials; Beijing; China doctoral candidate;P.O. Box 81-4; Beijing 100095;China. MICROSTRUCTURES OF Mg-Zr, Mg-Zn AND Mg-Zn-Zr ALLOYS. Acta Metall Sin, 1993, 29(4): 30-36.

Download:  PDF(3006KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microstructural studies have been made on the Mg-0.54Zr, Mg-5.68Zn andMg-5.65Zn-0.50Zr alloys in the as-cast and homogenenized states. The lenticular plates of{012} twins were found in the three alloys. After homogenization, the ZrH_2 phase formed inthe Mg-0.54Zr alloy. The Mg_7Zn_8 phase of cubic structure with α=1.417 nm distributes atthe grain boundaries of Mg-5.68Zn alloy. After homogenization, the Mg_7Zn_8 phase dissolvesand the MgZn_2 phase occurs. The as-cast Mg-5.65Zn-0.50Zr alloy consists ofMgZn_2 phase and Zn-Zr compounds. After homogenization, the dispersed acicularMgZn_2 phase may precipitate.
Key words:  Mg-Zn-Zr alloy      phase structure      twin     
Received:  18 April 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I4/30

1 北京航空材料研究所.航空材料学.上海:上海科学技术出版社,1985:192
2 Emley E F. Principles of Magnesium Technology. Oxford: Pergamon Press, 1966: 249
3 Портной К И,Лебедев АА 著,林裴译.镁合金手册.北京:冶金工业出版社,1959: 77
4 张少卿,鲁立奇,余应梅.航空材料,1982,2(1) :13
5 张少卿,金属学报,1989;25:A346
6 黄孝瑛.电子显微镜图像分析原理与应用.北京:宇航出版社,1989:171
7 Clark J B. Acta Metall, 1965, 13: 1281
8 Joint Committee on Powder Diffraction Standards. PDF No. 8--269, Powder Diffraction File Inorganic Phases. Pennsylvania: JCPDS, 1983
9 Лашко Н Ф等著.金钦乾,徐澄宇,马翔译.钢和合金的物理-化学相分析.北京:国防工业出版社,1982:273
10 Hanson M. Constitution of Binary Alloys. New York: McGraw-Hill, 1958: 929
11 Raynor G V. The Physical Metallurgy of Magnesium and Its Alloys. London: Pergamon Press, 1959: 200--202w
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[4] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[5] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[6] GAO Dong, ZHOU Yu, YU Ze, SANG Baoguang. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature[J]. 金属学报, 2022, 58(9): 1141-1149.
[7] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[8] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[9] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[10] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[11] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[12] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[13] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[14] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[15] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
No Suggested Reading articles found!