Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (5): 68-73    DOI:
Current Issue | Archive | Adv Search |
SCC MECHANISM OF AISI 321 IN ACIDIC CHLORIDE SOLUTION
CAO Chunan;LIN Haichao;LU Ming Corrosion Science Laborotory; Institute of Corrosion and Protection of Metals; Academia Sinica; ShenyangHUANG Yanliang;Ph D student;Institute of Corrosion and Protection of Metals ;Aeudemia Sinica;Shenyang 110015
Cite this article: 

CAO Chunan;LIN Haichao;LU Ming Corrosion Science Laborotory; Institute of Corrosion and Protection of Metals; Academia Sinica; ShenyangHUANG Yanliang;Ph D student;Institute of Corrosion and Protection of Metals ;Aeudemia Sinica;Shenyang 110015. SCC MECHANISM OF AISI 321 IN ACIDIC CHLORIDE SOLUTION. Acta Metall Sin, 1993, 29(5): 68-73.

Download:  PDF(693KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Stainless steel AISI 321 in 0.5 mol / L HCl+0.5mol / L NaCl solution at 55℃is confirmed under the active anodic dissolution state. SCC of the steel in the solution can notbe reasonably explatined by the passive film rupture-repassivation theory and by thehydrogen embrittlement theory. It is believed that the fracture stress at the tip of cracks is re-duced by anodic dissolution due to its role in relieving strain hardening layer at crack tip.
Key words:  stress corrosion cracking      stainless steel      anodic dissolution     
Received:  18 May 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I5/68

1 Hoar T P, Hinse J G. J Iron Steel Inst, 1954; 177: 148
2 Rhodes P R. Corrosion, 1969: 25: 462
3 Hoar T P, Scully J C. J Electrochem Soc. 1964; 111: 348
4 Pugh E N. In: Scully J C ed., The Theory of Stress Corrosion Cracking in Alloys, Brussels: NATO, 1971: 21
5 Staehle R W. In: Sculy J C ed., The Theory of Stress Corrosion Cracking in Alloys. Brussels: NATO, 1971: 223
6 Uhlig H H. In: Rhodined T N ed., Physical Metallurgy of Stress Corrosion Fracture, New York: Interscience, 1959: 1
7 Nielsen N A. In: Rhodined T N ed., Physical Metallrugy of Stress Corrosion. Fracture. New York: Interscience, 1959: 341
8 Galvele J R. Corros Sci, 1987; 27: 1
9 Jones D A. Metall Trans. 1985; 16A: 1133
10 曹楚南.新材料研究--第二届中国材料研讨会论文集,上册,武汉,1988:238
11 Fragnani A, Trabanelli G, Zucchi F. Corros Sci, 1984; 24: 917
12 Okada F, Hosoi Y, Abe S. Trans Iron Steel Inst Jpn, 1992; 15: 121
13 曹楚南,杨乾刚,吕明,林海潮.中国腐蚀与防护学报,1992;12:109
14 Zuo J Y, Gu B X, Liu Y P. Corrosion. 1991; 47: 47
15 魏学军,周向阳,李劲,刘光磊,柯伟.金属学报,待发表
16 罗炳清,吕明,曹楚南,李启中.新材料研究--第二届中国材料研讨会论文集,下册,武汉,1988:367
17 Revie R W, Uhlig H H. Corros Sci, 1972: 12: 669
18 Revie R W, Uhlig H H. Acta Metall, 1974; 22: 619
19 Uhlig H H. J Electrochem Soc, 1976; 22: 619
20 Uhlig H H. Corros Sci, 1981; 21: 271
21 Kramer I R. Scr Metall, 1974; 8: 1231~
[1] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[4] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[7] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[8] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[9] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[10] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[12] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[13] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[14] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[15] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
No Suggested Reading articles found!