Please wait a minute...
Acta Metall Sin  1994, Vol. 30 Issue (3): 104-108    DOI:
Current Issue | Archive | Adv Search |
SITE OCCUPATION OF Cr ATOMS AT SUBLATTICE IN Fe_3Al-BASED INTERMETALLICS
YANG Wangyue;SUN Zuqing;HUANG Yuanding(University of Science and Technology Beijing) ZHANG Baisheng;DING Yongfan;YANG Jilian(China Institute of Atomic Energy;Beijing)(Manuscript received 29 June;1993)
Cite this article: 

YANG Wangyue;SUN Zuqing;HUANG Yuanding(University of Science and Technology Beijing) ZHANG Baisheng;DING Yongfan;YANG Jilian(China Institute of Atomic Energy;Beijing)(Manuscript received 29 June;1993). SITE OCCUPATION OF Cr ATOMS AT SUBLATTICE IN Fe_3Al-BASED INTERMETALLICS. Acta Metall Sin, 1994, 30(3): 104-108.

Download:  PDF(306KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the fact that the scattering lengths of Fe and Cr atoms to neutron are quite different,the site occupation of Cr in D0_3 type Fe-28Al-5Cr alloy has been determined by means of neutron difractometry.The experimental results indicate that Cr atoms are only substituted for Fe atoms and occupy the sublattice of the next nearest neighbour of Al atoms.Decrease in NNNAPB energy leads widening of NNNAPB in the superlattice dislocation and,therefore,cross slip becomes easier and the deformation ability is improved.This is confirmed by the investigation of the surface slip line and dislocation configuration under optical and transmission electron microscope respectively.Correspondent:YANG Wangyue,Department of Materials,University of Science and Technology Beijing,Beijing 100083
Key words:  Fe_3Al      intermetallic      plastic deformation      neutron diffraction     
Received:  18 March 1994     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1994/V30/I3/104

1McKameyCG,DevanJH,TortorelliPF.J MaterRes.1991;6:17792McKamey CG,HortonJ A,LiuCT.J Mater Res,1989;4:11563孙祖庆,黄原定,杨王玥,陈国良.北京科技大学学报,1991;6:5394SunZQ,HuangYD,YangWY,ChenGL.Mater Res SocSympProc,BOSTON:MRS,1993;288:8855孙祖庆,黄原定,杨王玥,毛伟民,陈国良.金属学报,1993;29:A3356BanconGE著,谈洪,乐英译.中子衍射.北京:科学出版社,19807RietveldHM.ApplCrystallogr,1969;2:65
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[4] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[5] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[6] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[7] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[8] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[9] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[12] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[13] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[14] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[15] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
No Suggested Reading articles found!