Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (2): 79-84    DOI:
Current Issue | Archive | Adv Search |
^MICROSTRUCTURE OF NANOCRYSTALLINE MATERIALS
PING Dehai; LI Douxing; YE Hengqiang(Laboratory of Atomic Imaging of Solids;Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). WU Xijun(Zhejiang University; Hangzhou 310014) (Manuscript received 94-06-30)
Cite this article: 

PING Dehai; LI Douxing; YE Hengqiang(Laboratory of Atomic Imaging of Solids;Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). WU Xijun(Zhejiang University; Hangzhou 310014) (Manuscript received 94-06-30). ^MICROSTRUCTURE OF NANOCRYSTALLINE MATERIALS. Acta Metall Sin, 1995, 31(2): 79-84.

Download:  PDF(644KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The grain boundaries in nanocrystalline palladium synthesized by the inert gas condensation and in situ compacting method have ordered and imperfect or disordered regions. Nanovoids are also observed at the interfaces. High density of dislocations are detected inside the grains and at the grain boundaries. Most of the interfaces in nanocrystalline Ti-Ni-Si and Fe-Mo-Si-B alloys produced by the amorphous crystallization have ordered structure. No obvious disordered regions and nanovoids are observed at the interfaces. However, the lattice fringes near the ordered grain boundaries or interfaces regions in the nanocrystalline materials produced by the various process show curved and a little distorted appearance. In comparison with the nanocrystalline palladium, the nanocrystalline alloys obtained from the amorphous crystallization have much lower density of dislocations.Correspondent:PING Dehai,(Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015)
Key words:  nanocrystalline materials      grain boundary      defect      high resolution electron microscopy     
Received:  18 February 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I2/79

1MelendresCA,NarayanasamyA,MaroniVA,SiegelRW.J.MaterRes,1989:4:12462FitzsimmonsMR,EastmanJA,Miiller-StachM,WallnerG.PhysRev.1991:44B:24523JorraE,FranzH,PeislJ,WallnerG,PetryW,BirringerR,GleiterH,HauboldT.PhilosMag,1989:60B:1594ZhuX,BirringerR,HerrU,GleiterH.PhysRev,1987;35B:90855HauboldT,BirringerR,LengelerB,GleiterH.PhysLett,1989:135:4616GleiterH.ProgMaterSci,1989;33:2237WunderlichW,IshidaY,MaurerR.SerMetallMater,1990;24:4038SiegelRW,ThomasGJ.Ultramicroscopy,1992,40:3769LiDX,PingDH,YeHQ,QinXY,WuXJ.MaterLett,1993;18:2910YshizawaY,OgumaS,YamauchiKJApplPhys,1988:64:606411LuK,WangJT,WeiWD.JApplPhys,1991;69:52212吴希俊.力学进展,1991.21:6313BirringerR,HerrU,GleiterH.TransJpnInstMet,1986:27(Suppl.):43:
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[10] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[11] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[12] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[13] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[14] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[15] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
No Suggested Reading articles found!