Please wait a minute...
Acta Metall Sin  2026, Vol. 62 Issue (1): 117-132    DOI: 10.11900/0412.1961.2025.00254
Overview Current Issue | Archive | Adv Search |
Research Progress on Brazing of Dissimilar Metals
CAO Jian, GAO Jianwei, ZHAO Wendi, XUE Pengpeng, YANG Bo, LI Chun, QI Junlei, SI Xiaoqing()
State Key Laboratory of Precision Welding Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

CAO Jian, GAO Jianwei, ZHAO Wendi, XUE Pengpeng, YANG Bo, LI Chun, QI Junlei, SI Xiaoqing. Research Progress on Brazing of Dissimilar Metals. Acta Metall Sin, 2026, 62(1): 117-132.

Download:  HTML  PDF(3312KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The rising demand for high-end equipment manufacturing across the energy, electronics, and aerospace industries has necessitated the development of effective methods for joining dissimilar materials, particularly metals. Dissimilar metal brazing is a notable joining technique owing to its advantages such as low joining temperatures, efficient sealing capability, and applicability to complex structures; it is therefore a central topic in materials processing research. However, dissimilar metal brazing faces significant technical challenges that impede its broader industrial use. Differences in the physical and chemical properties of the base materials, such as melting points, thermal expansion behaviors, and chemical reactivities, can cause problems such as poor wetting of filler metals, generation of residual stresses (leading to joint cracking), and the formation of brittle intermetallic compounds that degrade mechanical strength. Additionally, base materials with irregular shapes further complicate the brazing process, leading to uneven heat distribution, misalignment, and difficulties in achieving effective filler-metal wetting. In this review, the key challenges and underlying mechanisms in dissimilar metal brazing are examined. Current strategies for improving brazability, including surface modification techniques, innovations in high-performance filler metals, and optimization of process parameters, are also systematically reviewed. This review also addresses issues arising from component shape and size differences and proposes viable solutions. Finally, future directions for dissimilar metal brazing are explored, highlighting the potential of intelligent process control systems and the development of environmentally sustainable brazing materials.

Key words:  brazing      wettability      interfacial reaction      residual stress     
Received:  01 September 2025     
ZTFLH:  TG454  
Fund: National Natural Science Foundation of China(52005131);National Natural Science Foundation of China(52125502);National Natural Science Foundation of China(52275323);Fundamental Research Funds for the Central Universities(FRFCU-5710051121);Fundamental Research Funds for the Central Universities(FRFCU5720100421)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2025.00254     OR     https://www.ams.org.cn/EN/Y2026/V62/I1/117

Fig.1  SEM images of interface microstructures (a-e, g-k) and variations of wetting angles (f, l) of wetted industrial pure Ti (TAl) (a-f) and TC4 alloy (g-l) specimens at different temperatures[31] (Insets in Figs.1f and l are actual photographs of contact angle measurement) (a, g) 915 oC (b, h) 925 oC (c, i) 935 oC (d, j) 945 oC (e, k) 955 oC
Fig.2  Representative instantaneous images of the wetting and spreading processes of BNi-2 (Cr-7Si-3B) filler metal on TC4 substrate[35] (T—temperature, t—time)
(a) 1020 oC (b) 1080 oC (c) 1150 oC
Fig.3  SEM images of TiAl/Ti33.3Zr16.7Cu39Ni11/GH3030 joint brazed at 960 oC for 10 min[40]
(a) TiAl/Ti33.3Zr16.7Cu39Ni11 interface (b) tolal view of joint (c) Ti33.3Zr16.7Cu39Ni11/GH3030 interface
Fig.4  SEM images (a, b) and shear strengths (c) of brazed joints of 6061 aluminum alloy and Ti-6Al-4V titanium alloy[55]
(a) initial microstructure
(b) microstructure after introduction of rare earth elements
Fig.5  Residual stress distributions of YG8/AgCuNiMn/GH4169 brazed joints without intermediate layer (a) and with Cu (b, c) and Mo (d, e) intermediate layers[58] (σmax—maximum axial residual stress of the joint) (b, d) 0.2 mm thickness (c, e) 1.2 mm thickness
Fig.6  Residual stress distributions of Q355 steel surface with (a) and without (b) surface pattern design[64]
Fig.7  OM images (a-d) and three-dimensional morphologies (e-h) of 301L stainless steel after patterned design[65] (a, e) as-received (AR) state (b, f) chemical surface textured (CST) (c, g) laser surface textured (LST) (d, h) laser-chemical hybrid surface textured (LCHST)
[1] Lin S B, Song J L, Yang C L, et al. Microstructure analysis of interfacial layer with tungsten inert gas welding-brazing joint of aluminum alloy/stainless steel [J]. Acta Metall. Sin., 2009, 45: 1211
林三宝, 宋建岭, 杨春利 等. 铝合金/不锈钢钨极氩弧熔-钎焊接头界面层的微观结构分析 [J]. 金属学报, 2009, 45: 1211
[2] Yan J C, Xu Z W, Shi L, et al. Ultrasonic assisted fabrication of particle reinforced bonds joining aluminum metal matrix composites [J]. Mater. Des., 2011, 32: 343
[3] Wang P C, Liu W H, Li J Z, et al. Unrevealing the wetting behavior and mechanism of AgCuTi filler on negative thermal expansion Sc2W3O12 materials: Experiments and first-principles calculations [J]. Appl. Surf. Sci., 2024, 652: 159257
[4] Li B L, Zhou J Y, Pan H, et al. Control of the intermetallic compound of the laser welding-brazing steel-Al joint and its effect on the joint property [J]. J. Mater. Res. Technol., 2025, 36: 2839
[5] Tian S K, Zhao F, Wu G L, et al. Dowel-like morphology of Cu2Al3 enhances shear strength of interfacial layers in Cu-Al composites [J]. Acta Mater., 2025, 284: 120589
[6] Liu Z T, Li Z S, Chen D J, et al. Research status of friction stir welding of Ti/Al dissimilar metals [J]. J. Ordnance Equip. Eng., 2021, 42(8): 106
刘正涛, 李忠盛, 陈大军 等. 钛/铝异种金属搅拌摩擦焊技术研究现状 [J]. 兵器装备工程学报, 2021, 42(8): 106
[7] Zhao B W, Shang H L, Chen F, et al. “Wetting” and brazing of AlN by sputtered Al [J]. Acta Phys. Sin., 2016, 65: 086801
赵博文, 尚海龙, 陈 凡 等. 溅射Al对AlN的“润湿”与钎焊 [J]. 物理学报, 2016, 65: 086801
[8] Zheng X H. Wettability of metals and ceramics by Zr55Cu30Al10Ni5 BMG-forming liquid and their interfacial characteristics [D]. Changchun: Jilin University, 2010
郑小红. Zr55Cu30Al10Ni5非晶熔体与金属及陶瓷的润湿性和界面特征 [D]. 长春: 吉林大学, 2010
[9] Kumar G, Prabhu K N. Review of non-reactive and reactive wetting of liquids on surfaces [J]. Adv. Colloid Interface Sci., 2007, 133: 61
[10] Zeng C, Zhang F Q, Liu W J, et al. Research progress on wetting behavior of molten metal on surface of copper substrates [J]. Hot Work. Technol., 2025, 54(10): 16
曾 春, 张凤泉, 刘文举 等. 金属熔体在铜基体表面润湿行为的研究进展 [J]. 热加工工艺, 2025, 54(10): 16
[11] Li S N, Chi Q, Feng H, et al. Research progress on wettability improvement and regulation strategies in brazing of dissimilar materials [J]. J. Netshape Form. Eng., 2025, 17(6): 46
李胜男, 池 强, 封 辉 等. 异质材料钎焊连接润湿性改善与调控策略研究进展 [J]. 精密成形工程, 2025, 17(6): 46
[12] Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
[13] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546
[14] Wang Z P, Zhang F S, He Y. Wetting and spreading of liquid brazing alloy in the interface of dissimilar metal [J]. Acta Photonica Sin., 1996, 25(2): 190
王忠平, 张赋升, 贺 勇. 异种金属界面液态钎料的润湿铺展 [J]. 光子学报, 1996, 25(2): 190
[15] Boschetto A, Giordano V, Veniali F. Surface roughness prediction in fused deposition modelling by neural networks [J]. Int. J. Adv. Manuf. Technol., 2013, 67: 2727
[16] Xu F J, Zhang L X, Feng J C, et al. Process of indirect brazing alumina to 5A05 Al alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 463
徐富家, 张丽霞, 冯吉才 等. Al2O3陶瓷与5A05铝合金的间接钎焊工艺 [J]. 中国有色金属学报, 2010, 20: 463
[17] Liao J, Ni X J, Liu K, et al. Influence of brazing gap on microstructure and mechanical properties of brazed 10 steel joints [J]. Mater. Mech. Eng., 2025, 49(2): 28
廖 蒋, 倪雪杰, 刘 克 等. 钎缝间隙对10钢钎焊接头显微组织与力学性能的影响 [J]. 机械工程材料, 2025, 49(2): 28
[18] Han B Y, Zhang R H, Yang J, et al. Effect of Y contents on surface wetting and interfacial behavior of Al-Si-Cu-Zn-Ni-xY brazing filler alloys on 7072 aluminum alloy [J]. Mater. Charact., 2025, 220: 114683
[19] Fu Q J, Zhao L L. Research status and development of ultrasonic-assisted soldering technique [J]. Weld. Dig. Mach. Manuf., 2015, (2): 13
付秋姣, 赵琳琳. 超声波辅助钎焊技术的发展现状 [J]. 机械制造文摘-焊接分册, 2015, (2): 13
[20] Wang L, Ma Y M, Xu J, et al. Improving spreadability of molten metal in MIG welding-brazing of aluminum to steel by external magnetic field [J]. J. Manuf. Process, 2022, 81: 35
[21] Luan T M, Yang S H, Guo W B, et al. Investigation on the wettability of the moderate temperature brazing flux of CsF-AlF3 on aluminum alloys [J]. Weld. Dig. Mach. Manuf., 2016, (4): 1
栾天旻, 杨晟华, 郭卫兵 等. 氟铝酸铯中温钎剂钎焊铝合金的润湿性研究 [J]. 机械制造文摘-焊接分册, 2016, (4): 1
[22] Zhang G F, Zhang J X, Pei Y, et al. Joining of Al2O3p/Al composites by transient liquid phase (TLP) bonding and a novel process of active-transient liquid phase (A-TLP) bonding [J]. Mater. Sci. Eng., 2008, A488: 146
[23] Mu G Q, Qu W Q, Zhang Y H, et al. Effect of Ni on the wetting and brazing characterization of 304 stainless steel by Ag-Cu alloy [J]. J. Mater. Sci., 2023, 58: 6297
[24] Lu F Y, Xue S B, Lai Z M, et al. Effect of gallium on microstructure and properties of Ag-Cu-Zn filler metal [J]. Trans. China Weld. Inst., 2009, 30(1): 55
卢方焱, 薛松柏, 赖忠民 等. 镓对AgCuZn钎料组织和性能的影响 [J]. 焊接学报, 2009, 30(1): 55
[25] Han X H, Liu Y, Wu Y S, et al. Copper-phosphorus brazing filler metal soldering lug and preparation method thereof [P]. Chin Pat., 202010306918.4, 2020
韩晓辉, 刘 勇, 武永寿 等. 一种铜磷钎料焊片及其制备方法 [P]. 中国专利, 202010306918.4, 2020)
[26] Zu J Z, Ma J, Qin J, et al. Current research status of commonly used high-temperature brazing filler metal in the aerospace field [J]. J. Netshape Form. Eng., 2024, 16(7): 191
祖家泽, 马 佳, 秦 建 等. 航空航天领域常用高温钎料研究现状 [J]. 精密成形工程, 2024, 16(7): 191
[27] Gao Y, Xia Z D, Zhang X, et al. Vacuum brazing TA15 titanium alloy with Ti-based amorphous filler metal [J]. Mater. Sci. Technol., 2012, 20(3): 67
高 勇, 夏志东, 张 星 等. 钛基非晶钎料真空钎焊TA15钛合金的研究 [J]. 材料科学与工艺, 2012, 20(3): 67
[28] Shang J L, Li N, Yan J Z, et al. Structural characterization of sapphire/niobium joints welding by vacuum brazing with Ti, Zr-activated filler metal [J]. Aero Weapon., 2013, 20(6): 61
尚建利, 李 宁, 颜家振 等. 含Ti, Zr活性钎料真空钎焊蓝宝石/Nb接头结构分析 [J]. 航空兵器, 2013, 20(6): 61
[29] Xi B F, Wang Z C, Li D, et al. Study on the microstructure and properties of the active soldered 5A06 aluminum alloy joints using Ti-Cu-Ni skeleton-reinforced SAC305 solder [J]. Weld. Technol., 2025, 54(4): 16
奚邦富, 王梓丞, 李 丹 等. Ti-Cu-Ni骨架强化SAC305钎料活性钎焊5A06铝合金接头组织与性能研究 [J].焊接技术, 2025, 54(4): 16
[30] Wu H B. The preparation and properties research of new titanium alloy brazing materials [D]. Changsha: Central South University, 2013
吴浩波. 新型钛合金钎料制备及性能研究 [D]. 长沙: 中南大学, 2013
[31] Gao D J, Wu S W, Yang S X, et al. Study on the reactive wetting process of TiZrNiCu on TA1/TC4 heterogeneous interface [J]. Trans. China Weld. Inst., 2023, 44(6): 8
高德君, 武绍旺, 杨生旭 等. TiZrNiCu钎料在TA1/TC4异质界面的反应润湿过程 [J]. 焊接学报, 2023, 44(6): 8
[32] Li G Y. Research on improvement of welding performance of nickel based solder materials for stainless steel vacuum brazing [D]. Hangzhou: Zhejiang University of Science and Technology, 2024
李广亚. 用于不锈钢真空钎焊的镍基钎料焊接性能改进研究 [D]. 杭州: 浙江科技大学, 2024
[33] Yang M X, Jia Z D, Lin X C, et al. Vacuum brazing 0Cr18Ni9 stainless steel pipe to itself with BNi-2 filler alloy [J]. J. Harbin Inst. Technol., 2016, 48(5): 184
杨敏旋, 贾振东, 蔺晓超 等. 采用BNi-2钎料真空钎焊0Cr18Ni9不锈钢管材 [J]. 哈尔滨工业大学学报, 2016, 48(5): 184
[34] Li C H, Xiong W H, Lv H B. Function of chromium in diamond tool matrices [J]. Powder Metall. Technol., 2001, 19(6): 343
李晨辉, 熊惟皓, 吕海波. Cr在金刚石工具胎体材料中的作用 [J]. 粉末冶金技术, 2001, 19(6): 343
[35] Liu J K. Wetting spreading and brazing interface microstructure of different filler metal on selective laser melting TC4 substrates [D]. Nanchang: Nanchang University, 2021
刘健坤. 不同钎料在选区激光熔化成形TC4基板上的润湿铺展与钎焊界面组织性能 [D]. 南昌: 南昌大学, 2021
[36] Long W M, Qiao R L, Qin J, et al. Research progress in dissimilar material brazing technology and applications [J]. Trans. China Weld. Inst., 2025, 46(4): 1
龙伟民, 乔瑞林, 秦 建 等. 异质材料钎焊技术与应用研究进展 [J]. 焊接学报, 2025, 46(4): 1
[37] Yue X, He P, Feng J C, et al. Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal [J]. Mater. Charact., 2008, 59: 1721
[38] Cui B, Wang P B, Zhao W X, et al. Adding Zr element to improve the strength and mechanical properties of diamond vacuum-brazed with Ni-Cr boron-free filler alloy [J]. Diam. Relat. Mater, 2023, 133: 109722
[39] Liao L, Yang C G, Zhu J, et al. Effect of Ti and Zr on microstructure and mechanical properties of aluminum-copper alloy [J]. Hot Work. Technol., 2014, 43(1): 28
廖 林, 杨成刚, 朱 锦 等. Ti、Zr对铝铜合金组织和力学性能的影响 [J]. 热加工工艺, 2014, 43(1): 28
[40] Xia Y Q, Ma Z, Du Q, et al. Microstructure and properties of the TiAl/GH3030 dissimilar joints vacuum-brazed with a Ti-based amorphous filler metal [J]. Mater. Charact., 2024, 207: 113520
[41] Ye L, Li X H, Mao W, et al. Brazing of IC10 superalloy with Ni-based brazing fillers using Hf and Zr as melting-point depressants [J]. Trans. China Weld. Inst., 2009, 30(2): 137
叶 雷, 李晓红, 毛 唯 等. Hf与Zr为降熔元素镍基钎料对IC10合金的钎焊 [J]. 焊接学报, 2009, 30(2): 137
[42] Zheng M, Wang X R, Fan Z H, et al. Research progress on silver-based medium temperature solder and paste [J]. Foundry Technol., 2016, 37: 2719
郑 苗, 王晓蓉, 范仲华 等. Ag基中温钎料及焊膏的研究进展 [J]. 铸造技术, 2016, 37: 2719
[43] Luo D X, Xue S B, Li Z Q. Effects of Ga addition on microstructure and properties of Sn-0.5Ag-0.7Cu solder [J]. J. Mater. Sci.: Mater. Electron., 2014, 25: 3566
[44] Huang M L, Chen L D, Zhao N. Effect of Cu-Ni cross-solder interaction on liquid-solid interfacial reaction in Cu/Sn/Ni solder joint [J]. Chin. J. Nonferrous Met., 2013, 23: 1073
黄明亮, 陈雷达, 赵 宁. Cu-Ni交互作用对Cu/Sn/Ni焊点液固界面反应的影响 [J]. 中国有色金属学报, 2013, 23: 1073
[45] Bridges D, Zhang S H, Lang S, et al. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal [J]. Mater. Lett., 2018, 215: 11
[46] Guo X D. Study on microstructure and property of Sn2.5Ag0.7Cu 0.1-RExNi lead-free solder and solder joint under thermal shock [D]. Luoyang: Henan University of Science and Technology, 2016
郭兴东. Sn2.5Ag0.7Cu0.1RE x Ni无铅钎料及其热冲击下钎焊接头组织性能研究 [D]. 洛阳: 河南科技大学, 2016
[47] Lai H H, Chang H W, Yang X P, et al. Characterization of Zn-Al based brazing filler for steel/aluminum dissimilar joints[J]. J. Mater. Res. Technol., 2025, 38: 2091
[48] Huang Y L, Xiu Z Y, Wu G H, et al. Improving shear strength of Sn-3.0Ag-0.5Cu/Cu joints and suppressing intermetallic compounds layer growth by adding graphene nanosheets [J]. Mater. Lett., 2016, 169: 262
[49] Fang J H, Liu G H, Xie M, et al. Interfacial microstructure evolution and brazing properties of the vacuum-brazed QAl9-4/1Cr17Ni2 joints with a novel Cu-Mn-Ag-Ni-Zn filler metal [J]. Vacuum, 2025, 233: 113960
[50] Liang K M, Wan W Q, Li Y F, et al. Advances in micro/nanoparticle-enhanced Sn-based composite solders [J]. Int. J. Miner. Metall. Mater., 2025, 32: 2043
[51] Qin Y Q. Effects of brazing parameters on microstructure and mechanical properties of copper and steel brazed joint [J]. Hot Work. Technol., 2010, 39: 145
秦优琼. 钎焊工艺参数对铜/钢钎焊接头组织及性能的影响 [J]. 热加工工艺, 2010, 39(19): 145
[52] Kim S I, Yu D Y, Kim Y, et al. Controlling the solidification speed toward enhanced failure energy of Sn-0.7Cu system solder ball-attaches with alloy design using instantaneous large-area laser soldering [J]. Mater. Charact., 2025, 219: 114637
[53] Wang Z M, Yang J H, Qi F G, et al. Interfacial characterization and mechanical properties of reactive air brazed ZrO2 ceramic joints with Ag-CuO-Al2TiO5 composite filler metal [J]. Ceram. Int., 2021, 47: 29128
[54] Xing B, Rupert T J, Pan X Q, et al. Neural network kinetics for exploring diffusion multiplicity and chemical ordering in compositionally complex materials [J]. Nat. Commun., 2024, 15: 3879
[55] Chang S Y, Tsao L C, Lei Y H, et al. Brazing of 6061 aluminum alloy/Ti-6Al-4V using Al-Si-Cu-Ge filler metals [J]. J. Mater. Process. Technol., 2012, 212: 8
[56] You M Z, Long W M, Zhang G X, et al. Relieving residual stress and enhanced mechanical properties by novel sandwich composites filler metal [J]. Intermetallics, 2025, 181: 108751
[57] Zhang L L, Dong H G, Li P, et al. Vacuum brazing TiAl intermetallic to K4169 alloy using amorphous filler metals Ti56.25 - x Zr x Ni25Cu18.75 [J]. J. Mater. Sci. Technol., 2023, 154: 217
[58] Qiao R L, Long W M, Qin J, et al. Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints [J]. Trans. China Weld. Inst., 2024, 45(3): 68
乔瑞林, 龙伟民, 秦 建 等. YG8/GH4169异种材料钎焊接头残余应力的数值模拟 [J]. 焊接学报, 2024, 45(3): 68
[59] Peng S X, Mao Y W, Min M, et al. Joining of tungsten to CuCrZr alloy with Cu-TiH2-Ni filler and Cu interlayer [J]. Int. J. Refract. Met. Hard Mater., 2019, 79: 31
[60] Yu G Y, Zou T P, Chen S H, et al. Effect mechanism of Ni coating layer on the characteristics of Al/steel dissimilar metal brazing [J]. Mater. Charact., 2020, 167: 110518
[61] Deng Y Q, Cong W, Xu H B. Designing of a thin Mo diffusion barrier towards strong and reliable Ti/Cu dissimilar brazing [J]. Mater. Sci. Eng., 2020, A786: 139469
[62] Liu M E, Li B. Improving bonding strength and reliability of brazed titanium/copper dissimilar joint using vanadium interlayer [J]. Mater. Res. Express, 2023, 10: 126510
[63] Liu Z Y, Yang J, Li Y L, et al. Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser [J]. Appl. Surf. Sci., 2020, 520: 146316
[64] Yang B Y, Li H Y, Sun H F, et al. Towards enhanced mechanical performance of Al/steel welded-brazed joints via laser surface texturing modification [J]. J. Mater. Res. Technol., 2023, 27: 5278
[65] Li H Y, Xia H B, Li L Q, et al. Enhancing the reliability of laser welded-brazed aluminum/stainless steel joints via laser-chemical hybrid surface texturing [J]. Thin-Walled Struct., 2024, 199: 111780
[66] Li Y Q, Cheng Z, Liu S H, et al. Contact reactive brazing of TC4/304 stainless steel dissimilar metals by interrupted arc pulsed welding [J]. J. Mater. Res. Technol., 2023, 26: 8192
[67] Si X Q, Guo X J, Li C, et al. Investigation on heat transfer characteristics of Inconel 600 joints brazed by Cu-Mn-Ni filler [J]. Appl. Therm. Eng., 2024, 252: 123657
[68] Shan T P, Sun L B, Li Z W, et al. Innovative brazing strategy for high-reliability YSZ/Ag-CuO/Crofer 22 H joints: Pre-oxidation and oxide layer design [J]. Ceram. Int., 2025, 51: 24060
[69] Sun H B, Jin S L, Ma F L, et al. Research progress on preparation of ceramic-based copper cladding laminates by brazing with AgCuTi alloy filler [J]. Mater. Mech. Eng., 2025, 49(5): 18
孙会彪, 金石磊, 马峰岭 等. AgCuTi合金钎料钎焊制备陶瓷基覆铜板的研究进展 [J] 机械工程材料, 2025, 49(5): 18
[70] Liu L S, Wang L F. Research status and prospect of copper aluminum dissimilar metal welding [J]. Met. World, 2023, (1): 12
刘兰胜, 王龙凤. 铜铝异种金属焊接研究现状及展望 [J]. 金属世界, 2023, (1): 12
[71] Fu T, Zhao G J. Ti/Cu brazing using Zr-based amorphous filler [J]. Hot Work. Technol., 2025, 54(13): 125
傅 田, 赵国际. 采用Zr基非晶钎料的钛/铜钎焊连接 [J]. 热加工工艺, 2025, 54(13): 125
[72] Lichter S G, Escudié M C, Stacey A D, et al. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys [J]. Biomaterials, 2015, 53: 464
[73] Song X G, Li Z H, Zhang H Y, et al. Interface formation and strengthening mechanism of laser welded TC4 titanium alloy/316 stainless steel joint with CoCrNiCu high entropy alloy interlayer [EB/OL]. Trans. Nonferrous Met. Soc. China.
[74] Liu W M, Ouyang K, Zhang X M, et al. Influence of post-weld heat treatment on residual stress of welded joint of S30408/Q345R clad plate [J]. Trans. Mater. Heat Treat., 2023, 44(3): 217
刘文明, 欧阳凯, 张新明 等. 焊后热处理对S30408/Q345R复合板焊接接头残余应力的影响 [J]. 材料热处理学报, 2023, 44(3): 217
[75] Zhang F, Fu C H, Tian Z Y. Research on crack defect detection in pressure vessel welded joints using eddy current testing technology [J]. Metall. Mater., 2025, 45(6): 28
张 锋, 傅春浩, 田志勇. 基于涡流检测技术的压力容器焊接接头裂纹缺陷检测研究 [J]. 冶金与材料. 2025, 45(6): 28
[1] QU Tie, XIE Yang, WANG Chongyang, LI Lixia, XU Xiajian, MAO Zhixu, LUO Wenze, HUANG Zhiquan, DENG Dean. Residual Stress in a 34CrNi1Mo/Q355B Dissimilar Steel Butt Joint and the Effects of Post-Weld Heat Treatment on Residual Stress[J]. 金属学报, 2026, 62(1): 203-216.
[2] HE Jiabao, WANG Liang, ZHANG Chaowei, ZOU Mingke, MENG Jie, WANG Xinguang, JIANG Sumeng, ZHOU Yizhou, SUN Xiaofeng. Effect of Al2O3 Coating on Interface Reaction Between Si-Based Ceramic Core and Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2025, 61(7): 1093-1108.
[3] LIN Hao, LI Jian, YANG Zhaolong, ZHONG Shengyi. Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction[J]. 金属学报, 2024, 60(8): 1017-1030.
[4] GU Liming, FENG Xiaoming, YU Zhao, ZHANG Junfan, LIU Zhenyu, HE Lunhua, LU Huaile, LI Xiaohu, WANG Chen, ZHANG Xiaodong, XIAO Bolv, MA Zongyi. Impact of Cryogenic Cycling on the Macro and Microscopic Residual Stress in SiC/Al Composites[J]. 金属学报, 2024, 60(8): 1031-1042.
[5] LI Biao, ZHANG Long, YAN Tingyi, FU Huameng, YUAN Xudong, WEN Mingyue, ZHANG Hongwei, LI Hong, ZHANG Haifeng. Effects of Heat Treatment Processes and W Wire Properties on Residual Stress in W Wire Reinforced Zr-Based Metallic Glass Composites[J]. 金属学报, 2024, 60(8): 1055-1063.
[6] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[7] XU Zengguang, ZHOU Shiqi, LI Xiao, LIU Zhiquan. Excellent Oxidation Resistance and Solder Wettability of (111)-Oriented Nanotwinned Cu[J]. 金属学报, 2024, 60(7): 957-967.
[8] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
[9] XU Yifei, ZHANG Nan, XU Peixin, DU Borui, SHI Hua, WANG Miaohui. Interfacial Characterization and Surface Wear Mechanism of Ti(C, B)/Ni60A Composite Coating Prepared by In Situ Extra High-Speed Laser Cladding[J]. 金属学报, 2024, 60(12): 1721-1730.
[10] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[12] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[13] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[15] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
No Suggested Reading articles found!