Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (6): 941-952    DOI: 10.11900/0412.1961.2023.00174
Research paper Current Issue | Archive | Adv Search |
Field-Variable Diffusion Cellular Automaton Model for Dendritic Growth with Sixfold Symmetry Alloys
TANG Sifan1,2, WEI Jingjing1, YUE Yixin1, LI Pengyu1, YAO Man1, WANG Xudong1,2()
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), Dalian University of Technology, Dalian 116024, China
Cite this article: 

TANG Sifan, WEI Jingjing, YUE Yixin, LI Pengyu, YAO Man, WANG Xudong. Field-Variable Diffusion Cellular Automaton Model for Dendritic Growth with Sixfold Symmetry Alloys. Acta Metall Sin, 2025, 61(6): 941-952.

Download:  HTML  PDF(2559KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cellular automaton (CA) model exhibits a notable disadvantage of substantial anisotropy, triggered by the square cells, adjacent cell structures, and intrinsic features of the sharp interface model. This disadvantage leads to limitations in simulating dendritic growth with random preferred orientations during the solidification of alloys, particularly in the context of sixfold symmetric alloys. In the present study, drawing inspiration from the processing concept of diffuse interfaces and the gradient energy term in the phase field model, a function concerning the gradient of the field variable associated with the cell state is constructed and the diffusion equation for the field variable is derived. Consequently, a novel field-variable diffusion CA (FCA) model is proposed, which addresses the growth kinetics of the solid-liquid interface in accordance with the lever rule. The proposed model considers constitutional supercooling and the Gibbs-Thomson effect, employing the concentration potential method to manage solute diffusion and redistribution. The growth rate of interface cells is modulated by introducing a field-variable diffusion term. The analysis reveals that within the square-grid discretization mode, the model demonstrates validation under various conditions, focusing on the steady-state characteristics of the dendritic tip and growth kinetics of the sixfold symmetric Mg-6%Al (mass fraction) alloy. The findings are consistent with the predictions of the LGK model, suggesting that the FCA model can effectively emulate dendritic morphology with multifold symmetry and random preferred orientations, and elucidate critical dendritic arm behaviors, such as competitive dendritic growth and coarsening.

Key words:  field variable diffusion      cellular automaton      six-fold symmetry      dendritic growth      random preferred orientation     
Received:  18 April 2023     
Fund: National Natural Science Foundation of China(51974056);National Natural Science Foundation of China(51474047)
Corresponding Authors:  WANG Xudong, associate professor, Tel: (0411)84707347, E-mail: hler@dlut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00174     OR     https://www.ams.org.cn/EN/Y2025/V61/I6/941

Fig.1  Morphologies simulated by two cellular automaton (CA) models using Von Neumann neighborhood
(a1-a3) original CA model with 20 iterations (a1), 60 iterations (a2), and 100 iterations (a3) (b1-b3) field variable diffusion (FCA) model with 120 iterations (b1), 260 iterations (b2), and 400 iterations (b3)
Fig.2  Morphologies simulated by the two CA models using Moore neighborhood
(a1-a3) original CA model with 20 iterations (a1), 60 iterations (a2), and 100 iterations (a3) (b1-b3) FCA model with 120 iterations (b1), 260 iterations (b2), and 400 iterations (b3)
Fig.3  Flowchart of the CA model for dendritic growth based on field variable diffusion (t—time, Δt—time step, fS—solid fraction, ΔfS—solid fraction increment)
ParameterValueUnit
Diffusivity of alloy elements in liquid DL1.8 × 10-9m2·s-1
Diffusivity of alloy elements in solid DS1.0 × 10-13m2·s-1
Liquidus temperature TL901K
Partition coefficient k0.4-
Liquidus slope mL-5.5K·%-1 (% for mass fraction)
Gibbs-Thomson coefficient Γ2.0 × 10-7K·m
Kinetic anisotropy δk0.5-
Thermodynamic anisotropy δ0.03-
Accommodation coefficient γ1.25-
Degree of anisotropy n6-
Table 1  Thermophysical properties of Mg-6%Al alloy used in the calculations[13]
Fig.4  Simulated dendrites of Mg-6%Al alloy with different preferred orientations at the solidification time of 0.455 s
(a) 0° (b) 15° (c) 36° (d) 45°
Fig.5  Comparison of dendritic morphologies with different preferred orientations (θ)
Fig.6  Simulated dendrite morphology and concentration of the horizontal main dendrite arms for Mg-6%Al alloy
Fig.7  Simulated curves of dendrite tip parameters against time for Mg-6% Al alloy with 5 K under-cooling
(a) tip growth velocity
(b) tip radius
(c) tip concentration
Fig.8  Comparisons of dendrite tip radius (a) and tip growth velocity (b) from the FCA and Lipton-Glicksman-Kurz (LGK) models for the Mg-6%Al alloy
Fig.9  Evolutions of dendrite morphologies and solution concentrations of Mg-6%Al alloy with time
(a) 0.16 s (b) 0.28 s (c) 0.40 s (d) 0.52 s (e) 0.64 s (f) 0.76 s
Fig.10  Evolutions of simulated equiaxed dendrite morphologies and solution concentrations of Mg-6%Al alloy with dendrite numbers (N) and time
(a1) N = 8, 0.48 s (a2) N = 8, 2.64 s (a3) N = 8, 5.60 s (a4) N = 8, 10.00 s
(b1) N = 30, 0.48 s (b2) N = 30, 2.64 s (b3) N = 30, 5.60 s (b4) N = 30, 10.00 s
Fig.11  Simulated columnar dendritic morphologies during directional solidification of a Mg-6%Al alloy with time
(a) 0.16 s (b) 0.56 s (c) 1.04 s
(d) 1.44 s (The outlined region illustrates the local “necking” phenomenon during dendrite growth)
1 Kobayashi R. Modeling and numerical simulations of dendritic crystal growth [J]. Physica, 1993, 63D: 410
2 Kobayashi R. A numerical approach to three-dimensional dendritic solidification [J]. Exp. Math., 1994, 3: 59
3 Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions [J]. Phys. Rev., 1998, 57E: 4323
4 Karma A. Phase-field formulation for quantitative modeling of alloy solidification [J]. Phys. Rev. Lett., 2001, 87: 115701
5 Yamazaki M, Satoh J, Ohsasa K, et al. Numerical model of solidification structure formation in Fe-C alloy with peritectic transformation [J]. ISIJ Int., 2008, 48: 362
6 Wang W L, Ji C, Luo S, et al. Modeling of dendritic evolution of continuously cast steel billet with cellular automaton [J]. Metall. Mater. Trans., 2018, 49B: 200
7 Yamazaki M, Natsume Y, Harada H, et al. Numerical simulation of solidification structure formation during continuous casting in Fe-0.7mass% C alloy using cellular automaton method [J]. ISIJ Int., 2006, 46: 903
8 Tan W D, Bailey N S, Shin Y C. A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys [J]. Comp. Mater. Sci., 2011, 50: 2573
9 Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys [J]. Acta Mater., 1999, 47: 4253
10 Yin H, Felicelli S D, Wang L. Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods [J]. Acta Mater., 2011, 59: 3124
11 Beltran-Sanchez L, Stefanescu D M. A quantitative dendrite growth model and analysis of stability concepts [J]. Metall. Mater. Trans., 2004, 35A: 2471
12 Huo L, Han Z Q, Liu B C. Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh [J]. Acta Metall. Sin., 2009, 45: 1414
霍 亮, 韩志强, 柳百成. 基于两套网格的CA方法模拟铸造镁合金凝固过程枝晶形貌演化 [J]. 金属学报, 2009, 45: 1414
13 Wu M W, Xiong S M. Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method [J]. Acta Metall. Sin., 2010, 46: 1534
吴孟武, 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟 [J]. 金属学报, 2010, 46: 1534
doi: 10.3724/SP.J.1037.2010.00279
14 Jacot A, Rappaz M. A two-dimensional diffusion model for the prediction of phase transformations: Application to austenitization and homogenization of hypoeutectoid Fe-C steels [J]. Acta Mater., 1997, 45: 575
15 Schönfisch B. Anisotropy in cellular automata [J]. Biosystems, 1997, 41: 29
pmid: 9043675
16 Wei L, Lin X, Wang M, et al. A cellular automaton model for the solidification of a pure substance [J]. Appl. Phys., 2011, 103A: 123
17 Yin H B, Felicelli S D. A cellular automaton model for dendrite growth in magnesium alloy AZ91 [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075011
18 Song Y D. Microstructure simulation of magnesium alloy [D]. Dalian: Dalian University of Technology, 2012
宋迎德. 镁合金凝固组织模拟 [D]. 大连: 大连理工大学, 2012
19 Zhu M F, Stefanescu D M. Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys [J]. Acta Mater., 2007, 55: 1741
20 Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345
21 Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
22 Yin H, Felicelli S D. Dendrite growth simulation during solidification in the LENS process [J]. Acta Mater., 2010, 58: 1455
23 Nakagawa M, Natsume Y, Ohsasa K. Dendrite growth model using front tracking technique with new growth algorithm [J]. ISIJ Int., 2006, 46: 909
24 Liu Z Y, Xu Q Y, Liu B C. Modeling of dendrite growth for the cast Magnesium alloy [J]. Acta Metall. Sin., 2007, 43: 367
刘志勇, 许庆彦, 柳百成. 铸造镁合金的枝晶生长模拟 [J]. 金属学报, 2007, 43: 367
25 Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites—A cellular automaton model [J]. Int. J. Cast Met. Res., 2003, 15: 251
26 Wu M W, Xiong S M. Modeling of equiaxed and columnar dendritic growth of magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2212
27 Wang D K, Hou Y Q, Peng J Y. Partial Differential Equation Method for Image Processing [M]. Beijing: Science Press, 2008: 46
王大凯, 侯榆青, 彭进业. 图像处理的偏微分方程方法 [M]. 北京: 科学出版社, 2008: 46
28 Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites: A cellular automaton model and its quantitative capabilities [J]. Metall. Mater. Trans., 2003, 34A: 367
29 Chen J. Numerical simulation on solidification microstructures using cellular automaton method [D]. Nanjing: Southeast University, 2005
陈 晋. 基于胞元自动机方法的凝固过程微观组织数值模拟 [D]. 南京: 东南大学, 2005
30 Zhu M F, Xing L K, Fang H, et al. Progresses in dendrite coarsening during solidification of alloys [J]. Acta Metall. Sin., 2018, 54: 789
doi: 10.11900/0412.1961.2017.00564
朱鸣芳, 邢丽科, 方 辉 等. 合金凝固枝晶粗化的研究进展 [J]. 金属学报, 2018, 54: 789
doi: 10.11900/0412.1961.2017.00564
31 Wei J J, Wang X D, Yao M. Field variable diffusion cellular automaton model for dendritic growth with multifold symmetry for the solidification of alloys [J]. Modell. Simul. Mater. Sc. Eng., 2021, 29: 075005
32 Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy metals [J]. Mater. Sci. Eng., 1984, 65: 57
33 Liu L F. A study on prediction of grain size and grain refining of cast Mg-Al alloys [D]. Wuhan: Wuhan University of Science and Technology, 2017
刘龙飞. 铸造Mg-Al合金晶粒尺寸的预测及细化处理研究 [D]. 武汉: 武汉科技大学, 2017
34 Luo S, Zhu M Y. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method [J]. Comput. Mater. Sci., 2013, 71: 10
35 Fu Z N, Xu Q Y, Xiong S M. Microstructure simulation of magnesium alloy [J]. Mater. Sci. Forum, 2007, 546-549: 133
36 Miao J M, Jing T, Liu B C. Numerical simulation of dendritic morphology of magnesium alloys using phase field method [J]. Acta Metall. Sin., 2008, 44: 483
缪家明, 荆 涛, 柳百成. 镁合金枝晶形貌的相场方法模拟 [J]. 金属学报, 2008, 44: 483
37 Yao J P, Li X G, Long W Y, et al. Numerical simulation of multiple grains with different preferred growth orientation of magnesium alloys using phase-field method [J]. Chin. J. Nonferrous Met., 2014, 24: 302
尧军平, 李翔光, 龙文元 等. 镁合金不同取向多枝晶生长相场法模拟 [J]. 中国有色金属学报, 2014, 24: 302
[1] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[2] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
[3] Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification[J]. 金属学报, 2018, 54(2): 193-203.
[4] Lei WEI, Yongqing CAO, Haiou YANG, Xin LIN, Meng WANG, Weidong HUANG. Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed[J]. 金属学报, 2018, 54(12): 1801-1808.
[5] Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION[J]. 金属学报, 2016, 52(10): 1297-1310.
[6] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[7] ZHANG Lei, ZHAO Honglei, ZHU Mingfang. SIMULATION OF SOLIDIFICATION MICROSTRUC-TURE OF SPHEROIDAL GRAPHITE CAST IRON USING A CELLULAR AUTOMATON METHOD[J]. 金属学报, 2015, 51(2): 148-158.
[8] ZHAO Jiuzhou, LI Lu, ZHANG Xianfei. DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS[J]. 金属学报, 2014, 50(6): 641-651.
[9] LI Zhengyang, ZHU Mingfang, DAI Ting. MODELING OF MICROPOROSITY FORMATION IN AN Al-7%Si ALLOY[J]. 金属学报, 2013, 49(9): 1032-1040.
[10] . EFFECT OF FORCED FLOW ON THREE DIMENSIONAL DENDRITIC GROWTH OF Al-Cu ALLOYS[J]. 金属学报, 2012, 48(5): 615-620.
[11] SHI Yufeng XU Qingyan LIU Baicheng. SIMULATION OF EUTECTIC GROWTH IN DIRECTIONAL SOLIDIFICATION BY CELLULAR AUTOMATON METHOD[J]. 金属学报, 2012, 48(1): 41-48.
[12] JIANG Hongxiang ZHAO Jiuzhou. A THREE-DIMENSIONAL CELLULAR AUTOMATON SIMULATION FOR DENDRITIC GROWTH[J]. 金属学报, 2011, 47(9): 1099-1104.
[13] SHI Yufeng XU Qingyan GONG Ming LIU Baicheng. SIMULATION OF NH4Cl-H2O DENDRITIC GROWTH IN DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2011, 47(5): 620-627.
[14] ZHI Ying LIU Xianghua YU Hailiang WANG Zhenfan. SIMULATION OF MICROSTRUCTURE AND PROPERTIES EVOLUTION OF MICRO ALLOYED STEEL DURING HOT DEFORMATION BY CELLULAR AUTOMATON[J]. 金属学报, 2011, 47(11): 1396-1402.
[15] SU Bin HAN Zhiqiang ZHAO Yongrang SHEN Bingzhen ZHANG Lianzhen LIU Baicheng. CA MODELING OF PHASE TRANSFORMATION IN ASTM A216 WCA CAST STEEL DURING SOLIDIFICATION AND COOLING PROCESS[J]. 金属学报, 2011, 47(11): 1388-1395.
No Suggested Reading articles found!