|
|
Field-Variable Diffusion Cellular Automaton Model for Dendritic Growth with Sixfold Symmetry Alloys |
TANG Sifan1,2, WEI Jingjing1, YUE Yixin1, LI Pengyu1, YAO Man1, WANG Xudong1,2( ) |
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
TANG Sifan, WEI Jingjing, YUE Yixin, LI Pengyu, YAO Man, WANG Xudong. Field-Variable Diffusion Cellular Automaton Model for Dendritic Growth with Sixfold Symmetry Alloys. Acta Metall Sin, 2025, 61(6): 941-952.
|
Abstract The cellular automaton (CA) model exhibits a notable disadvantage of substantial anisotropy, triggered by the square cells, adjacent cell structures, and intrinsic features of the sharp interface model. This disadvantage leads to limitations in simulating dendritic growth with random preferred orientations during the solidification of alloys, particularly in the context of sixfold symmetric alloys. In the present study, drawing inspiration from the processing concept of diffuse interfaces and the gradient energy term in the phase field model, a function concerning the gradient of the field variable associated with the cell state is constructed and the diffusion equation for the field variable is derived. Consequently, a novel field-variable diffusion CA (FCA) model is proposed, which addresses the growth kinetics of the solid-liquid interface in accordance with the lever rule. The proposed model considers constitutional supercooling and the Gibbs-Thomson effect, employing the concentration potential method to manage solute diffusion and redistribution. The growth rate of interface cells is modulated by introducing a field-variable diffusion term. The analysis reveals that within the square-grid discretization mode, the model demonstrates validation under various conditions, focusing on the steady-state characteristics of the dendritic tip and growth kinetics of the sixfold symmetric Mg-6%Al (mass fraction) alloy. The findings are consistent with the predictions of the LGK model, suggesting that the FCA model can effectively emulate dendritic morphology with multifold symmetry and random preferred orientations, and elucidate critical dendritic arm behaviors, such as competitive dendritic growth and coarsening.
|
Received: 18 April 2023
|
Fund: National Natural Science Foundation of China(51974056);National Natural Science Foundation of China(51474047) |
Corresponding Authors:
WANG Xudong, associate professor, Tel: (0411)84707347, E-mail: hler@dlut.edu.cn
|
1 |
Kobayashi R. Modeling and numerical simulations of dendritic crystal growth [J]. Physica, 1993, 63D: 410
|
2 |
Kobayashi R. A numerical approach to three-dimensional dendritic solidification [J]. Exp. Math., 1994, 3: 59
|
3 |
Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions [J]. Phys. Rev., 1998, 57E: 4323
|
4 |
Karma A. Phase-field formulation for quantitative modeling of alloy solidification [J]. Phys. Rev. Lett., 2001, 87: 115701
|
5 |
Yamazaki M, Satoh J, Ohsasa K, et al. Numerical model of solidification structure formation in Fe-C alloy with peritectic transformation [J]. ISIJ Int., 2008, 48: 362
|
6 |
Wang W L, Ji C, Luo S, et al. Modeling of dendritic evolution of continuously cast steel billet with cellular automaton [J]. Metall. Mater. Trans., 2018, 49B: 200
|
7 |
Yamazaki M, Natsume Y, Harada H, et al. Numerical simulation of solidification structure formation during continuous casting in Fe-0.7mass% C alloy using cellular automaton method [J]. ISIJ Int., 2006, 46: 903
|
8 |
Tan W D, Bailey N S, Shin Y C. A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys [J]. Comp. Mater. Sci., 2011, 50: 2573
|
9 |
Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys [J]. Acta Mater., 1999, 47: 4253
|
10 |
Yin H, Felicelli S D, Wang L. Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods [J]. Acta Mater., 2011, 59: 3124
|
11 |
Beltran-Sanchez L, Stefanescu D M. A quantitative dendrite growth model and analysis of stability concepts [J]. Metall. Mater. Trans., 2004, 35A: 2471
|
12 |
Huo L, Han Z Q, Liu B C. Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh [J]. Acta Metall. Sin., 2009, 45: 1414
|
|
霍 亮, 韩志强, 柳百成. 基于两套网格的CA方法模拟铸造镁合金凝固过程枝晶形貌演化 [J]. 金属学报, 2009, 45: 1414
|
13 |
Wu M W, Xiong S M. Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method [J]. Acta Metall. Sin., 2010, 46: 1534
|
|
吴孟武, 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟 [J]. 金属学报, 2010, 46: 1534
doi: 10.3724/SP.J.1037.2010.00279
|
14 |
Jacot A, Rappaz M. A two-dimensional diffusion model for the prediction of phase transformations: Application to austenitization and homogenization of hypoeutectoid Fe-C steels [J]. Acta Mater., 1997, 45: 575
|
15 |
Schönfisch B. Anisotropy in cellular automata [J]. Biosystems, 1997, 41: 29
pmid: 9043675
|
16 |
Wei L, Lin X, Wang M, et al. A cellular automaton model for the solidification of a pure substance [J]. Appl. Phys., 2011, 103A: 123
|
17 |
Yin H B, Felicelli S D. A cellular automaton model for dendrite growth in magnesium alloy AZ91 [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075011
|
18 |
Song Y D. Microstructure simulation of magnesium alloy [D]. Dalian: Dalian University of Technology, 2012
|
|
宋迎德. 镁合金凝固组织模拟 [D]. 大连: 大连理工大学, 2012
|
19 |
Zhu M F, Stefanescu D M. Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys [J]. Acta Mater., 2007, 55: 1741
|
20 |
Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345
|
21 |
Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
|
22 |
Yin H, Felicelli S D. Dendrite growth simulation during solidification in the LENS process [J]. Acta Mater., 2010, 58: 1455
|
23 |
Nakagawa M, Natsume Y, Ohsasa K. Dendrite growth model using front tracking technique with new growth algorithm [J]. ISIJ Int., 2006, 46: 909
|
24 |
Liu Z Y, Xu Q Y, Liu B C. Modeling of dendrite growth for the cast Magnesium alloy [J]. Acta Metall. Sin., 2007, 43: 367
|
|
刘志勇, 许庆彦, 柳百成. 铸造镁合金的枝晶生长模拟 [J]. 金属学报, 2007, 43: 367
|
25 |
Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites—A cellular automaton model [J]. Int. J. Cast Met. Res., 2003, 15: 251
|
26 |
Wu M W, Xiong S M. Modeling of equiaxed and columnar dendritic growth of magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2212
|
27 |
Wang D K, Hou Y Q, Peng J Y. Partial Differential Equation Method for Image Processing [M]. Beijing: Science Press, 2008: 46
|
|
王大凯, 侯榆青, 彭进业. 图像处理的偏微分方程方法 [M]. 北京: 科学出版社, 2008: 46
|
28 |
Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites: A cellular automaton model and its quantitative capabilities [J]. Metall. Mater. Trans., 2003, 34A: 367
|
29 |
Chen J. Numerical simulation on solidification microstructures using cellular automaton method [D]. Nanjing: Southeast University, 2005
|
|
陈 晋. 基于胞元自动机方法的凝固过程微观组织数值模拟 [D]. 南京: 东南大学, 2005
|
30 |
Zhu M F, Xing L K, Fang H, et al. Progresses in dendrite coarsening during solidification of alloys [J]. Acta Metall. Sin., 2018, 54: 789
doi: 10.11900/0412.1961.2017.00564
|
|
朱鸣芳, 邢丽科, 方 辉 等. 合金凝固枝晶粗化的研究进展 [J]. 金属学报, 2018, 54: 789
doi: 10.11900/0412.1961.2017.00564
|
31 |
Wei J J, Wang X D, Yao M. Field variable diffusion cellular automaton model for dendritic growth with multifold symmetry for the solidification of alloys [J]. Modell. Simul. Mater. Sc. Eng., 2021, 29: 075005
|
32 |
Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy metals [J]. Mater. Sci. Eng., 1984, 65: 57
|
33 |
Liu L F. A study on prediction of grain size and grain refining of cast Mg-Al alloys [D]. Wuhan: Wuhan University of Science and Technology, 2017
|
|
刘龙飞. 铸造Mg-Al合金晶粒尺寸的预测及细化处理研究 [D]. 武汉: 武汉科技大学, 2017
|
34 |
Luo S, Zhu M Y. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method [J]. Comput. Mater. Sci., 2013, 71: 10
|
35 |
Fu Z N, Xu Q Y, Xiong S M. Microstructure simulation of magnesium alloy [J]. Mater. Sci. Forum, 2007, 546-549: 133
|
36 |
Miao J M, Jing T, Liu B C. Numerical simulation of dendritic morphology of magnesium alloys using phase field method [J]. Acta Metall. Sin., 2008, 44: 483
|
|
缪家明, 荆 涛, 柳百成. 镁合金枝晶形貌的相场方法模拟 [J]. 金属学报, 2008, 44: 483
|
37 |
Yao J P, Li X G, Long W Y, et al. Numerical simulation of multiple grains with different preferred growth orientation of magnesium alloys using phase-field method [J]. Chin. J. Nonferrous Met., 2014, 24: 302
|
|
尧军平, 李翔光, 龙文元 等. 镁合金不同取向多枝晶生长相场法模拟 [J]. 中国有色金属学报, 2014, 24: 302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|