Field-Variable Diffusion Cellular Automaton Model for Dendritic Growth with Sixfold Symmetry Alloys
TANG Sifan1,2, WEI Jingjing1, YUE Yixin1, LI Pengyu1, YAO Man1, WANG Xudong1,2()
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), Dalian University of Technology, Dalian 116024, China
Cite this article:
TANG Sifan, WEI Jingjing, YUE Yixin, LI Pengyu, YAO Man, WANG Xudong. Field-Variable Diffusion Cellular Automaton Model for Dendritic Growth with Sixfold Symmetry Alloys. Acta Metall Sin, 2025, 61(6): 941-952.
The cellular automaton (CA) model exhibits a notable disadvantage of substantial anisotropy, triggered by the square cells, adjacent cell structures, and intrinsic features of the sharp interface model. This disadvantage leads to limitations in simulating dendritic growth with random preferred orientations during the solidification of alloys, particularly in the context of sixfold symmetric alloys. In the present study, drawing inspiration from the processing concept of diffuse interfaces and the gradient energy term in the phase field model, a function concerning the gradient of the field variable associated with the cell state is constructed and the diffusion equation for the field variable is derived. Consequently, a novel field-variable diffusion CA (FCA) model is proposed, which addresses the growth kinetics of the solid-liquid interface in accordance with the lever rule. The proposed model considers constitutional supercooling and the Gibbs-Thomson effect, employing the concentration potential method to manage solute diffusion and redistribution. The growth rate of interface cells is modulated by introducing a field-variable diffusion term. The analysis reveals that within the square-grid discretization mode, the model demonstrates validation under various conditions, focusing on the steady-state characteristics of the dendritic tip and growth kinetics of the sixfold symmetric Mg-6%Al (mass fraction) alloy. The findings are consistent with the predictions of the LGK model, suggesting that the FCA model can effectively emulate dendritic morphology with multifold symmetry and random preferred orientations, and elucidate critical dendritic arm behaviors, such as competitive dendritic growth and coarsening.
Fig.1 Morphologies simulated by two cellular automaton (CA) models using Von Neumann neighborhood (a1-a3) original CA model with 20 iterations (a1), 60 iterations (a2), and 100 iterations (a3) (b1-b3) field variable diffusion (FCA) model with 120 iterations (b1), 260 iterations (b2), and 400 iterations (b3)
Fig.2 Morphologies simulated by the two CA models using Moore neighborhood (a1-a3) original CA model with 20 iterations (a1), 60 iterations (a2), and 100 iterations (a3) (b1-b3) FCA model with 120 iterations (b1), 260 iterations (b2), and 400 iterations (b3)
Fig.3 Flowchart of the CA model for dendritic growth based on field variable diffusion (t—time, Δt—time step, fS—solid fraction, —solid fraction increment)
Parameter
Value
Unit
Diffusivity of alloy elements in liquid
1.8 × 10-9
m2·s-1
Diffusivity of alloy elements in solid
1.0 × 10-13
m2·s-1
Liquidus temperature
901
K
Partition coefficient
0.4
-
Liquidus slope
-5.5
K·%-1 (% for mass fraction)
Gibbs-Thomson coefficient
2.0 × 10-7
K·m
Kinetic anisotropy
0.5
-
Thermodynamic anisotropy δ
0.03
-
Accommodation coefficient γ
1.25
-
Degree of anisotropy
6
-
Table 1 Thermophysical properties of Mg-6%Al alloy used in the calculations[13]
Fig.4 Simulated dendrites of Mg-6%Al alloy with different preferred orientations at the solidification time of 0.455 s (a) 0° (b) 15° (c) 36° (d) 45°
Fig.5 Comparison of dendritic morphologies with different preferred orientations (θ)
Fig.6 Simulated dendrite morphology and concentration of the horizontal main dendrite arms for Mg-6%Al alloy
Fig.7 Simulated curves of dendrite tip parameters against time for Mg-6% Al alloy with 5 K under-cooling (a) tip growth velocity (b) tip radius (c) tip concentration
Fig.8 Comparisons of dendrite tip radius (a) and tip growth velocity (b) from the FCA and Lipton-Glicksman-Kurz (LGK) models for the Mg-6%Al alloy
Fig.9 Evolutions of dendrite morphologies and solution concentrations of Mg-6%Al alloy with time (a) 0.16 s (b) 0.28 s (c) 0.40 s (d) 0.52 s (e) 0.64 s (f) 0.76 s
Fig.10 Evolutions of simulated equiaxed dendrite morphologies and solution concentrations of Mg-6%Al alloy with dendrite numbers (N) and time (a1) N = 8, 0.48 s (a2) N = 8, 2.64 s (a3) N = 8, 5.60 s (a4) N = 8, 10.00 s (b1) N = 30, 0.48 s (b2) N = 30, 2.64 s (b3) N = 30, 5.60 s (b4) N = 30, 10.00 s
Fig.11 Simulated columnar dendritic morphologies during directional solidification of a Mg-6%Al alloy with time (a) 0.16 s (b) 0.56 s (c) 1.04 s (d) 1.44 s (The outlined region illustrates the local “necking” phenomenon during dendrite growth)
1
Kobayashi R. Modeling and numerical simulations of dendritic crystal growth [J]. Physica, 1993, 63D: 410
2
Kobayashi R. A numerical approach to three-dimensional dendritic solidification [J]. Exp. Math., 1994, 3: 59
3
Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions [J]. Phys. Rev., 1998, 57E: 4323
4
Karma A. Phase-field formulation for quantitative modeling of alloy solidification [J]. Phys. Rev. Lett., 2001, 87: 115701
5
Yamazaki M, Satoh J, Ohsasa K, et al. Numerical model of solidification structure formation in Fe-C alloy with peritectic transformation [J]. ISIJ Int., 2008, 48: 362
6
Wang W L, Ji C, Luo S, et al. Modeling of dendritic evolution of continuously cast steel billet with cellular automaton [J]. Metall. Mater. Trans., 2018, 49B: 200
7
Yamazaki M, Natsume Y, Harada H, et al. Numerical simulation of solidification structure formation during continuous casting in Fe-0.7mass% C alloy using cellular automaton method [J]. ISIJ Int., 2006, 46: 903
8
Tan W D, Bailey N S, Shin Y C. A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys [J]. Comp. Mater. Sci., 2011, 50: 2573
9
Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys [J]. Acta Mater., 1999, 47: 4253
10
Yin H, Felicelli S D, Wang L. Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods [J]. Acta Mater., 2011, 59: 3124
11
Beltran-Sanchez L, Stefanescu D M. A quantitative dendrite growth model and analysis of stability concepts [J]. Metall. Mater. Trans., 2004, 35A: 2471
12
Huo L, Han Z Q, Liu B C. Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh [J]. Acta Metall. Sin., 2009, 45: 1414
Wu M W, Xiong S M. Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method [J]. Acta Metall. Sin., 2010, 46: 1534
Jacot A, Rappaz M. A two-dimensional diffusion model for the prediction of phase transformations: Application to austenitization and homogenization of hypoeutectoid Fe-C steels [J]. Acta Mater., 1997, 45: 575
15
Schönfisch B. Anisotropy in cellular automata [J]. Biosystems, 1997, 41: 29
pmid: 9043675
16
Wei L, Lin X, Wang M, et al. A cellular automaton model for the solidification of a pure substance [J]. Appl. Phys., 2011, 103A: 123
17
Yin H B, Felicelli S D. A cellular automaton model for dendrite growth in magnesium alloy AZ91 [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075011
18
Song Y D. Microstructure simulation of magnesium alloy [D]. Dalian: Dalian University of Technology, 2012
宋迎德. 镁合金凝固组织模拟 [D]. 大连: 大连理工大学, 2012
19
Zhu M F, Stefanescu D M. Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys [J]. Acta Mater., 2007, 55: 1741
20
Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345
21
Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
22
Yin H, Felicelli S D. Dendrite growth simulation during solidification in the LENS process [J]. Acta Mater., 2010, 58: 1455
23
Nakagawa M, Natsume Y, Ohsasa K. Dendrite growth model using front tracking technique with new growth algorithm [J]. ISIJ Int., 2006, 46: 909
24
Liu Z Y, Xu Q Y, Liu B C. Modeling of dendrite growth for the cast Magnesium alloy [J]. Acta Metall. Sin., 2007, 43: 367
Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites: A cellular automaton model and its quantitative capabilities [J]. Metall. Mater. Trans., 2003, 34A: 367
29
Chen J. Numerical simulation on solidification microstructures using cellular automaton method [D]. Nanjing: Southeast University, 2005
陈 晋. 基于胞元自动机方法的凝固过程微观组织数值模拟 [D]. 南京: 东南大学, 2005
30
Zhu M F, Xing L K, Fang H, et al. Progresses in dendrite coarsening during solidification of alloys [J]. Acta Metall. Sin., 2018, 54: 789
doi: 10.11900/0412.1961.2017.00564
Wei J J, Wang X D, Yao M. Field variable diffusion cellular automaton model for dendritic growth with multifold symmetry for the solidification of alloys [J]. Modell. Simul. Mater. Sc. Eng., 2021, 29: 075005
32
Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy metals [J]. Mater. Sci. Eng., 1984, 65: 57
33
Liu L F. A study on prediction of grain size and grain refining of cast Mg-Al alloys [D]. Wuhan: Wuhan University of Science and Technology, 2017
Luo S, Zhu M Y. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method [J]. Comput. Mater. Sci., 2013, 71: 10
35
Fu Z N, Xu Q Y, Xiong S M. Microstructure simulation of magnesium alloy [J]. Mater. Sci. Forum, 2007, 546-549: 133
36
Miao J M, Jing T, Liu B C. Numerical simulation of dendritic morphology of magnesium alloys using phase field method [J]. Acta Metall. Sin., 2008, 44: 483
Yao J P, Li X G, Long W Y, et al. Numerical simulation of multiple grains with different preferred growth orientation of magnesium alloys using phase-field method [J]. Chin. J. Nonferrous Met., 2014, 24: 302