|
|
Quenching Deformation of the 16MnCrS5 Gear Steel for Automobile |
QU Xiaobo1( ), AN Jinmin1, WANG Lin2, LI Xi2( ) |
1 Jiangsu Yonggang Group Co. Ltd., Suzhou 215628, China 2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
QU Xiaobo, AN Jinmin, WANG Lin, LI Xi. Quenching Deformation of the 16MnCrS5 Gear Steel for Automobile. Acta Metall Sin, 2025, 61(4): 597-607.
|
Abstract The 16MnCrS5 gear steel, known for its exceptional machinability and hardenability, is commonly utilized in the production of gears and worms in the automotive industry. However, the quenching process of this steel tends to provoke deformation, leading to increased wear and an inability of gear teeth to mesh. This issue seriously restricts the broader use of 16MnCrS5 gear steel. This study explores the quenching deformation of 16MnCrS5 gear steel through a combination of experimental research and numerical simulation to provide theoretical insight to mitigate this deformation in industrial production. The quenching deformations of C-notch samples derived from 16MnCrS5 gear steel, varying in grain size, banded structures, and hardenabilities were first measured. Subsequently, employing the deform finite element analysis software, the temperature field, stress field, and phase field during the quenching of these samples were simulated, thereby visually portraying the corresponding quenching deformation processes. The results indicate that the quenching deformation of 16MnCrS5 gear steel escalates with an increase in grain size and the proportion of banded structures. For instance, the sample with a grain size of 75 μm demonstrated nearly double the quenching deformation of the sample with a grain size of 22 μm. Moreover, when the grade of the banded structure surpasses 3, the quenching deformation of the sample markedly increases. Concurrently, the results revealed a positive correlation between quenching deformation and hardenability of 16MnCrS5 gear steel. Specifically, when the hardness at 9 mm from the quenching end (J9) > 32.2 HRC, the sample's core is largely martensitic, showing a stronger correlation with hardenability. Conversely, when J9 ≤ 32.2 HRC, there is noticeable bainitic transformation in the sample's core, resulting in a weaker correlation between the quenching deformation and hardenability. The experimental research and numerical simulations suggest that the intrinsic mechanism of quenching deformation in 16MnCrS5 gear steel is mainly attributable to thermal stress and martensitic transformation-induced stress. Notably, the temporal and spatial inhomogeneity of the martensite transformation in time and spatial distribution is the predominant factor affecting the quenching deformation of 16MnCrS5 gear steel.
|
Received: 02 February 2023
|
|
Fund: National Natural Science Foundation of China(51690164);Zhangjiagang Science and Technology Plan(ZKCXY2146) |
Corresponding Authors:
QU Xiaobo, senior engineer, Tel: 18962200729, E-mail: qubo6101@163.com; LI Xi, professor, Tel: 13764420935, E-mail: lx_net@sina.com
|
1 |
Lin C, Zhao M J, Pan H, et al. Blending gear shift strategy design and comparison study for a battery electric city bus with AMT [J]. Energy, 2019, 185: 1
|
2 |
Arunachalam R, Krishnan P K, Muraliraja R. A review on the production of metal matrix composites through stir casting—Furnace design, properties, challenges, and research opportunities [J]. J. Manuf. Processes, 2019, 42: 213
|
3 |
Gupta K, Jain N K, Laubscher R F. Spark erosion machining of miniature gears: A critical review [J]. Int. J. Adv. Manuf. Technol., 2015, 80: 1863
|
4 |
Xiao N, Hui W J, Zhang Y J, et al. Hydrogen embrittlement behavior of a vacuum-carburized gear steel [J]. Acta Metall. Sin., 2021, 57: 977
doi: 10.11900/0412.1961.2020.00363
|
|
肖 娜, 惠卫军, 张永健 等. 真空渗碳处理齿轮钢的氢脆敏感性 [J]. 金属学报, 2021, 57: 977
|
5 |
Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
|
6 |
Fang X R, Liu L, Xu H H, et al. Effect of pre-heat treatment before carburizing on distortion of gear shaft made of 17CrNiMo6 steel [J]. Heat Treat. Met., 2022, 47(3): 113
doi: 10.13251/j.issn.0254-6051.2022.03.022
|
|
方秀荣, 刘 留, 徐慧慧 等. 渗碳前预热处理对17CrNiMo6钢制齿轮轴畸变的影响 [J]. 金属热处理, 2022, 47(3): 113
doi: 10.13251/j.issn.0254-6051.2022.03.022
|
7 |
Zhang G Q. Microstructure and distortion of niobium-containing 18CrNiMo7-6 gear steel after high-temperature carburization [D]. Beijing: Central Iron & Steel Research Institute, 2021
|
|
张国强. 含铌18CrNiMo7-6齿轮钢高温渗碳组织和变形研究 [D]. 北京: 钢铁研究总院, 2021
|
8 |
Cao Y G. Study on hardenability, heat treatment distortion and fatigue property of carburized gear steels [D]. Beijing: Central Iron & Steel Research Institute, 2017
|
|
曹燕光. 渗碳齿轮钢淬透性及其热处理变形和疲劳性能研究 [D]. 北京: 钢铁研究总院, 2017
|
9 |
Liu J M. Research on abnormal deformation of automobile gear during carburizing and quenching heat treatment [J]. Met. Work., 2005, (11): 40
|
|
刘建明. 汽车齿轮渗碳淬火热处理异常变形的研究 [J]. 机械工人, 2005, (11): 40
|
10 |
An J M, Qin M, Ding Y. Effect of austenite grain size on heat treatment distortion automotive gear steels [J]. Heat Treat., 2013, 28(3): 48
|
|
安金敏, 覃 明, 丁 毅. 奥氏体晶粒度对汽车齿轮钢热处理畸变的影响 [J]. 热处理, 2013, 28(3): 48
|
11 |
Wang J, Dang S E, Fan Z J, et al. Microstructure homogenization of 17CrNiMo6 gear steel [J]. Heat Treat. Met., 2022, 47(11): 126
doi: 10.13251/j.issn.0254-6051.2022.11.022
|
|
王 杰, 党淑娥, 范子靖 等. 17CrNiMo6齿轮钢的组织均匀化 [J]. 金属热处理, 2022, 47(11): 126
|
12 |
Lai H Z. Research on forming mechanism of banded structure in 60Si2Mn spring flat steel and its influence on mechanical properties [D]. Ganzhou: Jiangxi University of Science and Technology, 2014
|
|
赖泓州. 60Si2Mn弹簧扁钢带状组织形成机理及对性能的影响研究 [D]. 赣州: 江西理工大学, 2014
|
13 |
Hua G P, Chao G Q, Shi J X. Formation and elimination of banded structure of 20CrNi2Mo steel [J]. Loco. Rolling Stock Technol., 2003, (5): 7
|
|
华公平, 晁国强, 侍继香. 20CrNi2Mo钢带状组织的形成与消除 [J]. 机车车辆工艺, 2003, (5): 7
|
14 |
Wang Z Y, Xing Z G, Wang H D, et al. The relationship between inclusions characteristic parameters and bending fatigue performance of 20Cr2Ni4A gear steel [J]. Int. J. Fatigue, 2022, 155: 106594
|
15 |
Wang B X, Liu X H, Wang G D. Dynamic recrystallisation behaviour and microstructural evolution in a Mn-Cr gear steel [J]. Mater. Sci. Technol., 2005, 21: 798
|
16 |
Huang J B. Research on the hardenability and phase transformation behavior of heavy transmission gear steel [D]. Beijing: Beijing Jiaotong University, 2017
|
|
黄金宝. 重载传动齿轮钢淬透性及相变变形规律的研究 [D]. 北京: 北京交通大学, 2017
|
17 |
Yang C, An J M, Huan Z Z. Numerical simulation of banded microstructure on quenching distortion in gear steel based on Deform [J]. Bao-Steel Technol., 2016, (3): 16
|
|
杨 超, 安金敏, 黄宗泽. 基于Deform的带状组织对齿轮钢淬火变形影响数值模拟 [J]. 宝钢技术, 2016, (3): 16
|
18 |
Seo H, Lee D G, Park J, et al. Quench hardening effect of gray iron brake discs on particulate matter emission [J]. Wear, 2023, 523: 204781
|
19 |
Zhang W H. A study on fabrication, heat-treatments and mechanical properties of V-Nb microalloyed gear steel [D]. Wuhan: Wuhan University of Science and Technology, 2007
|
|
张文汉. V-Nb微合金化齿轮钢及其热处理工艺和力学性能的研究 [D]. 武汉: 武汉科技大学, 2007
|
20 |
An X X, Tian Y, Wang H J, et al. Suppression of austenite grain coarsening by using Nb-Ti microalloying in high temperature carburizing of a gear steel [J]. Adv. Eng. Mater., 2019, 21: 1900132
|
21 |
O'Brien E C H C, Yeddu H K. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears [J]. J. Mater. Sci. Technol., 2020, 49: 157
doi: 10.1016/j.jmst.2019.10.044
|
22 |
Wang B, He Y P, Liu Y, et al. Mechanism of the microstructural evolution of 18Cr2Ni4WA steel during vacuum low-pressure carburizing heat treatment and its effect on case hardness [J]. Materials, 2020, 13: 2352
|
23 |
Wang Y B. A study on hardenability and band structure of 20CrMoH gear steel [D]. Kunmin: Kunming University of Science and Technology, 2010
|
|
王彦彬. 20CrMoH齿轮钢的淬透性及带状组织研究 [D]. 昆明: 昆明理工大学, 2010
|
24 |
Hu S B. A simple conversion formule of HV and HRC mutual [J]. J. Hubei Univ. Auto. Technol., 1992, (2): 64
|
|
胡树兵. 一种简单的洛氏C硬度与维氏硬度相互换算数学公式 [J]. 湖北汽车工业学院学报, 1992, (2): 64
|
25 |
Koistine D F, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels [J]. Acta Metall., 1959, 7: 59
|
26 |
Denis S, Gautier E, Simon A, et al. Stress-phase-transformation interactions—Basic principles, modelling, and calculation of internal stresses [J]. Mater. Sci. Technol., 1985, 1: 805
|
27 |
Li H B, Zheng M Y, Tian W, et al. Flow stress constitutive equation of M50NiL gear steel based on Johnson-Cook model [J]. Mater. Mech. Eng., 2016, 40(11): 31
|
|
李红斌, 郑明月, 田 伟 等. 基于Johnson-Cook模型构建M50NiL齿轮钢的流变应力本构方程 [J]. 机械工程材料, 2016, 40(11): 31
|
28 |
Rego R, Löpenhaus C, Gomes J, et al. Residual stress interaction on gear manufacturing [J]. J. Mater. Process. Technol., 2018, 252: 249
|
29 |
Chen W, He X F, Yu W C, et al. Nano- and microhardness distribution in the carburized case of Nb-microalloyed gear steel [J]. J. Mater. Eng. Perform., 2020, 29: 4626
doi: 10.1007/s11665-020-04992-7
|
30 |
Du Y F. Effects of heat treatment and hot processing on banded structure characteristics and mechanical properties of PCrNi3MoV steel [D]. Taiyuan: North University of China, 2021
|
|
杜云飞. 热处理和热加工对PCrNi3MoV钢带状组织及力学性能的影响研究 [D]. 太原: 中北大学, 2021
|
31 |
Zhang Y T. Studies on mechanism and control of die quenching deformation for spiral bevel gear [D]. Chongqing: Chongqing University, 2017
|
|
张映桃. 螺旋锥齿轮模压淬火变形机理及控制研究 [D]. 重庆: 重庆大学, 2017
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|