Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (10): 1469-1484    DOI: 10.11900/0412.1961.2024.00221
Overview Current Issue | Archive | Adv Search |
Research Progress on the Influence of the Deep-Sea Environment on the Stress Corrosion of Titanium Alloys
XU Weichen1,2(), TONG Xiangyu1,2, WANG Youqiang2, ZHANG Binbin1(), MA Chaoqun1,2, WANG Xiutong1,2
1 State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China
Cite this article: 

XU Weichen, TONG Xiangyu, WANG Youqiang, ZHANG Binbin, MA Chaoqun, WANG Xiutong. Research Progress on the Influence of the Deep-Sea Environment on the Stress Corrosion of Titanium Alloys. Acta Metall Sin, 2025, 61(10): 1469-1484.

Download:  HTML  PDF(3174KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium alloys are extensively used in deep-sea exploration and resource-development equipment. The harsh environment of the deep sea hinders the performance of titanium alloys. Although titanium alloys exhibit outstanding corrosion resistance, they are susceptible to stress corrosion. This study conducted a detailed analysis of the key factors influencing titanium alloys in deep-sea environments, such as hydrostatic pressure, temperature, salinity, and trace substances. The effects of mechanical stresses such as tensile, residual, and alternating stresses on the stress corrosion of titanium alloys were also analyzed. Consequently, the influence of the compositional design and microstructure of titanium alloys on their susceptibility and sensitivity to stress corrosion were discussed. This study highlighted significant gaps, particularly in understanding the effect of microstructure on stress corrosion, stress corrosion mechanisms in titanium-welded joints, synergistic effects of multiple deep-sea environmental factors, and the effect of complex stress conditions. Current studies primarily focused on material-level analysis rather than structural-level assessments. Existing corrosion protection technologies for deep-sea applications, particularly coating technologies for such environments, remain underdeveloped. To address these limitations, this study proposed prospective research areas, including the synergistic mechanism involving multiple environmental factors, the synergistic effect between creep and stress corrosion, the effect of microstructure and residual stress in welded joints, the development of innovative protection technologies, and simulations of multi-axis stress conditions and their effect on stress corrosion.

Key words:  titanium alloy      stress corrosion      deep-sea environment      stress corrosion cracking      protective method     
Received:  02 July 2024     
ZTFLH:  TG171  
Fund: National Science and Technology Major Project and Shandong Provincial Natural Science Foundation(ZR2023ME063)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00221     OR     https://www.ams.org.cn/EN/Y2025/V61/I10/1469

Fig.1  Schematic of stress corrosion mechanism of the TC4 welding bead
Fig.2  Schematic of testing equipment in real deep-sea environment[15]
(a) submersible testing system on seabed
(b) bunch style testing system
(c) novel deep-sea environmental testing system: suspension style testing system (the left); efficient bunch style testing system (the right)
Fig.3  Effects of trace substances on stress corrosion of titanium alloys in deep-sea environment
Fig.4  Four typical microstructural types of commonly used titanium alloys[87]
(a, a1-a3) equiaxed microstructure type (a), including three typical metallographic standard figures for near-α titanium alloy (a1), α + β titanium alloy (a2), and metastable β titanium alloy (a3) (b, b1-b3) bimodal microstructure type (b), including three typical metallographic standard figures for near-α titanium alloy (b1), α + β titanium alloy (b2), and metastable β titanium alloy (b3) (c, c1-c3) basket microstructure type (c), including three typical metallographic standard figures for broken grain boundary α phases (c1), discontinuous grain boundary α phases (c2), and massive transformation α phases (c3) (d, d1-d3) lamellar microstructure type (d), including three typical metallographic standard figures for thick lamellar α phases (d1), lamellar α phases (d2), and thin lamellar α phases (d3)
Fig.5  OM images of Ti-6Al-4V alloy at different magnifications (a-c)
Fig.6  Microstructures of the Ti-5%Ta-1.8%Nb alloy[92]
(a) OM image showing the predominantly equiaxed structure
(b) SEM secondary electron image showing the fine intragranular β precipitates
FactorVariableReason
EnvironmentLow temperatureDetrimental to the formation of the passive film on titanium alloys, especially when the passive film is damaged
Hydrostatic pressureAltering the composition of the passive film (alternating stress and creep deformation further exacerbate stress corrosion)
Trace substancesDissolved oxygen, carbon dioxide, and hydrogen sulfide can cause damage to the passive film of titanium alloys
SalinityHigh chloride ion concentration will favor the penetration of chloride and accelerate stress corrosion crack propagation
MaterialAlloying elementAffecting the crystal structure, passive film formation/re-formation, and electrochemical characteristics of titanium alloys
Tensile stressIncreasing the susceptibility of stress corrosion, leading to brittle fracture
MicrostructureThe distributions of the α and β phases changes stress corrosion characteristics and the development of crack
Table 1  Key factors influencing the stress corrosion of titanium alloys in deep-sea environment
Fig.7  Microstructures of the base metal (a), heat-affected zone (b), and welding bead (c) of Ti-6Al-3Nb-2Zr-1Mo weldment
[1] Dong Y C, Fang Z G, Chang H, et al. Service performance of titanium alloy in marine environment [J]. Mater. China, 2020, 39: 185
董月成, 方志刚, 常 辉 等. 海洋环境下钛合金主要服役性能研究 [J]. 中国材料进展, 2020, 39: 185
[2] Wang K. Simulated deep-sea environment in titanium stress corrosion [D]. Harbin: Harbin Engineering University, 2014
王 奎. 模拟深海环境钛合金应力腐蚀性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014
[3] Zhou M, Wang Q, Wang Y X, et al. Effect of prewelding pretreatment on welding residual stress of titanium alloy thick plate [J]. Acta Metall. Sin., 2024, 60: 1064
doi: 10.11900/0412.1961.2024.00054
周 牧, 王 倩, 王延绪 等. 焊前预处理对钛合金厚板焊接残余应力的影响 [J]. 金属学报, 2024, 60: 1064
[4] Liu J H, Tian S, Li S M, et al. Stress corrosion crack of new ultrahigh strength steel [J]. Acta Aeronaut. Astronaut. Sin., 2011, 32: 1164
刘建华, 田 帅, 李松梅 等. 新型超高强度钢应力腐蚀断裂行为研究 [J]. 航空学报, 2011, 32: 1164
[5] Zhang R. The study on susceptibility to stress corrosion cracking and hydrogen embrittlement of titanium and titanium alloy in seawater [D]. Hohhot: Inner Mongolia University of Technology, 2013
张 睿. 钛及钛合金在海水中的应力腐蚀及氢脆敏感性研究 [D]. 呼和浩特: 内蒙古工业大学, 2013
[6] Zhao Y, Wang J, Su F, et al. Hydrogen embrittlement susceptibility of Ti-6Al-4V alloys fabricated by electron beam melting in simulated deep-sea environment [J]. Corrosion, 2024, 80: 24
[7] Powell D T, Scully J C. Stress corrosion cracking of alpha titanium alloys at room temperature [J]. Corrosion, 1968, 24: 151
[8] Scully J C, Powell D T. The stress corrosion cracking mechanism of α-titanium alloys at room temperature [J]. Corros. Sci., 1970, 10: 719
[9] Fang W P, Xiao T, Zhang Y P, et al. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints [J]. Trans. China Weld. Inst., 2019, 40(12): 121
房卫萍, 肖 铁, 张宇鹏 等. 超厚板TC4钛合金电子束焊接接头应力腐蚀敏感性 [J]. 焊接学报, 2019, 40(12): 121
doi: 10.12073/j.hjxb.2019400324
[10] Tal-Gutelmacher E, Eliezer D. Hydrogen cracking in titanium-based alloys [J]. J. Alloys Compd., 2005, 404-406: 621
[11] Zhang H X, Zhang F, Hao F Y, et al. Stress corrosion behavior and mechanism of Ti6321 alloy with different microstructures in stimulated deep-sea environment [J]. Corros. Sci., 2024, 233: 112059
[12] de Souza K A, Robin A. Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40% tantalum alloys and tantalum in sulfuric acid solutions [J]. Mater. Chem. Phys., 2007, 103: 351
[13] Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
[14] Xu L K, Li W J, Chen G Z. Deep sea corrosion test technique [J]. Marine Sci., 2005, 29: 1
许立坤, 李文军, 陈光章. 深海腐蚀试验技术 [J]. 海洋科学, 2005, 29: 1
[15] Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
郭为民, 孙明先, 邱 日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313
doi: 10.11903/1002.6495.2016.288
[16] Ulanovskii I B. Corrosion of metals in the Atlantic Ocean [J]. Prot. Met., 1979, 15: 563
[17] Ulanovskii I B, Egorova V A. Metal corrosion at different depths in the sea [J]. Prot. Met., 1978, 14: 137
[18] Sawant S S, Venkat K, Wagh A B. Corrosion of metals and alloys in the coastal and deep waters of the Arabian Sea and the Bay of Bengal [J]. Indian J. Technol., 1993, 31: 862
[19] Venkatesan R, Dwarakadasa E S, Ravindran M. A deep-sea corrosion study on titanium and Ti6Al4V alloy [J]. Corros. Prevent. Contr., 2004, 51: 98
[20] Luciano G, Letardi P, Traverso P, et al. Corrosion behaviour of Al, Cu, and Fe alloys in deep sea environment [J]. Metall. Ital., 2013, 105: 21
[21] Lin J H, Dan Z H, Lu J F, et al. Research status and prospect on marine corrosion of titanium alloys in deep ocean environments [J]. Rare Met. Mater. Eng., 2020, 49: 1090
林俊辉, 淡振华, 陆嘉飞 等. 深海腐蚀环境下钛合金海洋腐蚀的发展现状及展望 [J]. 稀有金属材料与工程, 2020, 49: 1090
[22] Peng W C, Hou J, Guo W M. Research progress on the corrosion of aluminum alloy in deep ocean [J]. Dev. Appl. Mater., 2010, 25(1): 59
彭文才, 侯 健, 郭为民. 铝合金深海腐蚀研究进展 [J]. 材料开发与应用, 2010, 25(1): 59
[23] Hou J, Guo W M, Deng C L. Influences of deep sea environmental factors on corrosion behavior of carbon steel [J]. Equip. Environ. Eng., 2008, 5(6): 82
侯 健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响 [J]. 装备环境工程, 2008, 5(6): 82
[24] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
[25] Liu J, Li X B, Wang J. EIS characteristic of organic coating with artificial defects in simulated deep-sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 333
刘 杰, 李相波, 王 佳. 在模拟深海高压环境中人工破损涂层的电化学阻抗谱响应特征 [J]. 腐蚀科学与防护技术, 2010, 22: 333
[26] Liu H C, Bai X H, Li Z, et al. Electrochemical evaluation of stress corrosion cracking susceptibility of Ti-6Al-3Nb-2Zr-1Mo alloy welded joint in simulated deep-sea environment [J]. Materials, 2022, 15: 3201
[27] Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 111
李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 111
doi: 10.11902/1005.4537.2022.028
[28] Liu R, Cui Y, Zhang B, et al. Unveiling the effect of hydrostatic pressure on the passive films of the deformed titanium alloy [J]. Corros. Sci., 2021, 190: 109705
[29] Li M, Hu L Y, Hu K F, et al. Crevice corrosion behavior of 316L stainless steel in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1375
李 敏, 胡凌越, 胡科峰 等. 316L不锈钢在深海环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1375
[30] Gkatzogiannis S, Weinert J, Engelhardt I, et al. Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components [J]. Int. J. Fatigue, 2019, 126: 90
[31] Xu Y Z, Zhou Q P, Liu L, et al. Exploring the corrosion performances of carbon steel in flowing natural sea water and synthetic sea waters [J]. Corros. Eng. Sci. Technol., 2020, 55: 579
[32] Yi Q L, Yu H Y, Wang X L, et al. Production of viable tetraploid olive flounder (Paralichthys olivaceus) by hydrostatic pressure shock [J]. Oceanol. Limnol. Sin., 2012, 43: 382
衣启麟, 于海洋, 王兴莲 等. 静水压力诱导牙鲆(Paralichthys olivaceus)四倍体的条件优化 [J]. 海洋与湖沼, 2012, 43: 382
[33] Li G R, Chen X P, Zhou F H, et al. Self-powered soft robot in the Mariana Trench [J]. Nature, 2021, 591: 66
[34] Meng X N, Chen X, Wu M, et al. Effect of hydrostatic pressure on electrochemical behavior of X100 steel in NaHCO3 + NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 219
孟向楠, 陈 旭, 吴 明 等. 静水压力对X100钢在NaHCO3 + NaCl溶液中电化学行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 219
doi: 10.11902/1005.4537.2015.082
[35] Dong J J, Fan L, Zhang H B, et al. Electrochemical performance of passive film formed on Ti-Al-Nb-Zr alloy in simulated deep sea environments [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 595
[36] Paul S, Yadav K. Corrosion behavior of surface-treated implant Ti-6Al-4V by electrochemical polarization and impedance studies [J]. J. Mater. Eng. Perform., 2011, 20: 422
[37] Xiong X L, Zhou Q J, Li J X, et al. Cathodic over-potential and hydrogen partial pressure coupling in hydrogen evolution reaction of marine steel under hydrostatic pressure [J]. Electrochim. Acta, 2017, 247: 1019
[38] Liu R, Cui Y, Liu L, et al. A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2020, 165: 108402
[39] Zhao Y, Liu Y C, Gai X, et al. Investigating the stress corrosion cracking (SCC) susceptibility of Ti-6Al-4V alloys fabricated by electron beam melting in deep-sea environment [J]. Corrosion, 2021, 77: 853
[40] Li G Y, Han Z H, Tian J W, et al. Alternating stress field and superhardness effect in TiN/NbN superlattice films [J]. J. Vac. Sci. Technol., 2002, 20A: 674
[41] Srivatsan T S, Soboyejo W O, Lederich R J. The cyclic fatigue and fracture behavior of a titanium alloy metal matrix composite [J]. Eng. Fract. Mech., 1995, 52: 467
[42] Frost N E. Notch effects and the critical alternating stress required to propagate a crack in an aluminium alloy subject to fatigue loading [J]. J. Mech. Eng. Sci., 1960, 2: 109
[43] Liu Z M, Zhu P L, Mao X N, et al. Effect of Si addition on the microstructure and creep properties of the forged titanium alloy [J]. Mater. Chem. Phys., 2024, 317: 129212
[44] Zhang B, Tian D, Song Z M, et al. Research progress in dwell fatigue service reliability of titanium alloys for pressure shell of deep-sea submersible [J]. Acta Metall. Sin., 2023, 59: 713
doi: 10.11900/0412.1961.2022.00441
张 滨, 田 达, 宋竹满 等. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展 [J]. 金属学报, 2023, 59: 713
[45] Zhan C J, Yu T H, Koo C H. Creep behavior of Ti-40Al-10Nb titanium aluminide intermetallic alloy [J]. Mater. Sci. Eng., 2006, A435-436: 698
[46] Luo X, Yang C, Li D D, et al. Laser powder bed fusion of beta-type titanium alloys for biomedical application: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2024, 37: 17
[47] He X J, Li J M. Linear interpolation for image conversion between square structure and hexagonal structure [J]. Proc. Appl. Math. Mech., 2007, 7: 1011001
[48] Stoltz R E, Pelloux R M. The Bauschinger effect in precipitation strengthened aluminum alloys [J]. Metall. Trans., 1976, 7A: 1295
[49] Huang H, Zhang Y, Lu J F, et al. Room-temperature compressive creep behavior of Ti-6Al-4V ELI alloys with basketweave microstructure under an alternating compressive stress [J]. Mater. Sci., 2023, 29: 209
[50] Guo Y H, Liu G, Song Y Z. Creep behavior of titanium alloy used in deep-sea pressure shell considering tensile/compressive asymmetry: Experiments and numerical modeling [J]. Ocean Eng., 2023, 288: 116095
[51] Soboyejo W O, Obayemi J D, Annan E, et al. Review of high temperature ceramics for aerospace applications [J]. Adv. Mater. Res., 2015, 1132: 385
[52] Tsimplis M N, Baker T F. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? [J]. Geophys. Res. Lett., 2000, 27: 1731
[53] Zhang Y J, Hu H W, Yan H, et al. Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils [J]. Sci. Total Environ., 2019, 668: 193
[54] Khaled M M, Yilbas B S, Al-Qaradawi I Y, et al. Corrosion properties of duplex treated Ti-6Al-4V alloy in chloride media using electrochemical and positron annihilation spectroscopy techniques [J]. Surf. Coat. Technol., 2006, 201: 932
[55] Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
[56] Schumacher M M. Seawater Corrosion Handbook [M]. Park Ridge: Noyes Data Corporation, 1979: 1
[57] Pang J J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater [J]. Corros. Sci., 2016, 105: 17
[58] Kalienko M S, Zhelnina A V, Popov A A. A study of gas-saturated layer after oxidation of alloy Ti6242S at 500-800 oC [J]. Met. Sci. Heat Treat., 2024, 65: 563
[59] Sun J Y, Peng W S, Xing S H. Combined effect of stress and dissolved oxygen on corrosion behavior of Ni-Cr-Mo-V high strength steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 755
孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 755
doi: 10.11902/1005.4537.2023.213
[60] Lu Z L, Guo X P. Preliminary study of the corrosion inhibitor adsorption behavior of dodecylamine on N80 steel surface in CO2 saturated saline solutions with different pH values [A]. Proceedings of the 14th National Symposium on Corrosion Inhibitors [C]. Beihai: Corrosion Inhibitors Professional Committee of China Corrosion and Protection Society, 2006: 40
鲁照玲, 郭兴蓬. 不同pH值的CO2饱和盐水溶液中十二胺在N80钢表面缓蚀吸附行为初探 [A]. 第十四届全国缓蚀剂学术讨论会论文集 [C]. 北海: 中国腐蚀与防护学会缓蚀剂专业委员会, 2006: 40
[61] Gao K, Zhang Y, Yi J H, et al. Overview of surface modification techniques for titanium alloys in modern material science: A comprehensive analysis [J]. Coatings, 2024, 14: 148
[62] Townsend H E. Hydrogen sulfide stress corrosion cracking of high strength steel wire [J]. Corrosion, 1972, 28: 39
[63] Li N, Wang L, Zhou Z, et al. The interaction mechanism of titanium alloy TC4 between passive film and sulfate reducing bacteria biofilm in marine environment [J]. Appl. Surf. Sci., 2025, 690: 162620
[64] Liu H C, Fan L, Zhang H B, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 175
柳皓晨, 范 林, 张海兵 等. 钛合金深海应力腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 175
doi: 10.11902/1005.4537.2021.050
[65] Sun J, Li X X, Zhang J H, et al. Phase field modeling of formation mechanism of grain boundary allotriomorph in βα phase transformation in Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2020, 56: 1113
孙 佳, 李学雄, 张金虎 等. Ti-6Al-4V合金βα相变中晶界α相形成机制的相场模拟 [J]. 金属学报, 2020, 56: 1113
[66] Zhao Y Q, Xin S W, Zeng W D. Effect of major alloying elements on microstructure and mechanical properties of a highly β stabilized titanium alloy [J]. J. Alloy. Compd., 2009, 481: 190
[67] Feeney J A, Blackburn M J. Effect of microstructure on the strength, toughness, and stress-corrosion cracking susceptibility of a metastable beta titanium alloy (Ti-11.5Mo-6Zr-4.5Sn) [J]. Metall. Trans., 1970, 1: 3309
[68] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1
[69] Zhang J, Zhu Z H, Zhang S, et al. Microstructure and mechanical properties of Ti-Al-Mo-Nb-V metastable β-type alloys alloying with high Al content [J]. Mater. Rep., 2018, 38: 22040297
张 健, 朱智浩, 张 爽 等. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能 [J]. 材料导报, 2024, 38: 22040297
[70] Lee E B, Han M K, Kim B J, et al. Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys [J]. Int. J. Mater. Res., 2014, 105: 847
[71] Rho S Y, Lee J S, Ando K, et al. Electrochemical degradation of the hydrogen-absorption-induced passive film on an Ni-Ti superelastic alloy in an NaCl solution [J]. Electrochim. Acta, 2024, 484: 144022
[72] Sharma R K, Das R K, Kumar S R. Effect of chromium-titanium on corrosion and erosion of HVOF coating [J]. Surf. Eng., 2022, 38: 366
[73] National Materials Corrosion and Protection Scientific Data Center. Comprehensive analysis of corrosion resistance characteristics of titanium materials [EB/OL]. (2017-11-07)[2024-09-19]. https://corrdata.org.cn/news/industry/2017-11-07/167371.html
国家材料腐蚀与防护科学数据中心. 钛材料耐腐蚀特性的全面分析 [EB/OL]. (2017-11-07)[2024-09-19]. https://corrdata.org.cn/news/industry/2017-11-07/167371.html
[74] Gamal H, Elshahawy A M, Medany S S, et al. Recent advances of vanadium oxides and their derivatives in supercapacitor applications: A comprehensive review [J]. J. Energy Storage, 2024, 76: 109788
[75] Liu H, Wang Z X, Cheng J, et al. Nb-content-dependent passivation behavior of Ti-Nb alloys for biomedical applications [J]. J. Mater. Res. Technol., 2023, 27: 7882
[76] Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
[77] Liang E Q, Huang S S, Ma Y J, et al. The influence of Fe on the mechanical properties of Ti-6Al-4V ELI alloy [J]. Chin. J. Mater. Res., 2016, 30: 299
doi: 10.11901/1005.3093.2015.353
梁恩泉, 黄森森, 马英杰 等. Fe对Ti-6Al-4VELI合金力学性能的影响 [J]. 材料研究学报, 2016, 30: 299
doi: 10.11901/1005.3093.2015.353
[78] Bian R G, Cui W C, Wan Z Q, et al. Effects of initial cracks and loading sequence on fatigue crack growth of the deepwater structures based on two-parameter unified approach [J]. J. Ship Mech., 2010, 14: 516
卞如冈, 崔维成, 万正权 等. 基于双参数统一方法的深海结构物疲劳裂纹扩展影响参数研究 [J]. 船舶力学, 2010, 14: 516
[79] Lin Y, Feng G Q, Ren H L, et al. Research on collision strength for deep sea submersible structures [A]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering [C]. Shanghai: ASME, 2010: 461
[80] Cheng Y F. Stress Corrosion Cracking of Pipelines [M]. Hoboken: John Wiley & Sons, Inc., 2013: 1
[81] Noyan I C, Cohen J B. Residual Stress: Measurement by Diffraction and Interpretation [M]. New York: Springer, 1987: 1
[82] Huang S D, Xu B, Liu C L, et al. Measurement of residual stress to titanium alloy tube made by cold radial forging [J]. J. Netshape Form. Eng., 2011, 3(6): 85
黄少东, 许 彪, 刘川林 等. 冷径向精锻钛合金管残余应力测试 [J]. 精密成形工程, 2011, 3(6): 85
[83] Liu R, Xie Y S, Jin Y, et al. Stress corrosion cracking of the titanium alloys under hydrostatic pressure resulting from the degradation of passive films [J]. Acta Mater., 2023, 252: 118946
[84] Lindemann J, Wagner L. Microtextural effects on mechanical properties of duplex microstructures in (α + β) titanium alloys [J]. Mater. Sci. Eng., 1999, A263: 137
[85] Rong X D, Huang L J, Wang B, et al. Effects of heat treatment on microstructure and mechanical properties of Ti60 alloy with Widmansätten microstructure [J] Trans. Mater. Heat Treat., 2015, 36(10): 39
戎旭东, 黄陆军, 王 博 等. 热处理对魏氏组织Ti60合金组织与性能的影响 [J]. 材料热处理学报, 2015, 36(10): 39
[86] Yang J, Huang S S, Yin H, et al. Inhomogeneity analyses of microstructure and mechanical properties of TC21 titanium alloy variable cross-section die forgings for aviation [J]. Acta Metall. Sin., 2024, 60: 333
doi: 10.11900/0412.1961.2022.00313
杨 杰, 黄森森, 尹 慧 等. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析 [J]. 金属学报, 2024, 60: 333
[87] Zhu Z S, Shang G Q, Wang X N, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications [J]. J. Aeronaut. Mater., 2020, 40(3): 1
朱知寿, 商国强, 王新南 等. 航空用钛合金显微组织控制和力学性能关系 [J]. 航空材料学报, 2020, 40(3): 1
doi: 10.11868/j.issn.1005-5053.2020.000086
[88] Bathini U, Srivatsan T S, Patnaik A, et al. A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy: Influence of orientation and microstructure [J]. J. Mater. Eng. Perform., 2010, 19: 1172
[89] Yang W T, Long X Q. Special corrosion types of titanium alloy used in civil aircraft [J]. Total Corros. Control, 2008, 22(2): 42
杨文涛, 隆小庆. 飞机上钛合金的特殊腐蚀形式 [J]. 全面腐蚀控制, 2008, 22(2): 42
[90] Xu Y L, Zhang X J, Lu X Y, et al. Influences of microstructures and macrozones on the stress corrosion cracking sensitivity of a near alpha titanium alloy [J]. Corros. Sci., 2024, 232: 112015
[91] Dong Y C, Huang S, Wang Y Y, et al. Stress corrosion cracking of TC4 ELI alloy with different microstructure in 3.5% NaCl solution [J]. Mater. Charact., 2022, 194: 112357
[92] Mythili R, Shankar A R, Saroja S, et al. Influence of microstructure on corrosion behavior of Ti-5%Ta-1.8%Nb alloy [J]. J. Mater. Sci., 2007, 42: 5924
[93] Liu G L. Study of stress corrosion mechanism of Ti alloys by recursion method [J]. Acta Metall. Sin., 2007, 43: 249
刘贵立. 递归法研究钛合金应力腐蚀机理 [J]. 金属学报, 2007, 43: 249
[94] Li Z, Gobbi S L, Norris I, et al. Laser welding techniques for titanium alloy sheet [J]. J. Mater. Process. Technol., 1997, 65: 203
[95] Xu C, Sheng G M, Wang H, et al. Tungsten inert gas welding-brazing of AZ31B magnesium alloy to TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2016, 32: 167
doi: 10.1016/j.jmst.2015.12.003
[96] Auwal S T, Ramesh S, Yusof F, et al. A review on laser beam welding of titanium alloys [J]. Int. J. Adv. Manuf. Technol., 2018, 97: 1071
[97] Casavola C, Pappalettere C, Tattoli F. Experimental and numerical study of static and fatigue properties of titanium alloy welded joints [J]. Mech. Mater., 2009, 41: 231
[98] Gao F Y, Sun Z J, Yang S L, et al. Stress corrosion characteristics of electron beam welded titanium alloys joints in NaCl solution [J]. Mater. Charact., 2022, 192: 112126
[99] Jiang C Y, Wang T, Yan K, et al. Study on welding application of titanium alloys for ships [J]. Dev. Appl. Mater., 1992, 7(6): 16
蒋成禹, 汪 汀, 严 铿 等. 舰船用钛合金的焊接应用研究 [J]. 材料开发与应用, 1992, 7(6): 16
[1] TAN Ruohan, SONG Yongfeng, CHEN Chao, LI Dan, CHENG Shu, LI Xiongbing. Mesomechanical Modeling and Experimental Study of Effective Elastic Tensors in Additively Manufactured Titanium Alloys[J]. 金属学报, 2025, 61(9): 1438-1448.
[2] ZHANG Mingchuan, XU Qinsi, LIU Yi, CAI Yusheng, MU Yiqiang, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Hot-Pressing Temperature on the Microstructure and Properties of the Diffusion-Bonded Region of TC4 Alloy[J]. 金属学报, 2025, 61(8): 1183-1192.
[3] FAN Ronglei, CHEN Minghe, WU Dipeng, WU Yong. Prediction of Damage and Hot Forming Limit of TA32 Titanium Alloy Based on Crystal Plasticity Model[J]. 金属学报, 2025, 61(8): 1293-1304.
[4] ZHAO Zhuoya, MENG Lingjian, LIN Peng, CAO Xiaoqing. Microstructure Evolution and Texture Formation Mechanism of α Phase During Continuous Through-Transus Thermal Compression of TC4 Titanium Alloy[J]. 金属学报, 2025, 61(5): 717-730.
[5] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[6] QI Min, WANG Qian, MA Yingjie, CAO Hemeng, HUANG Sensen, LEI Jiafeng, YANG Riu. Growth Behavior of Grain Boundary α Phase and Its Effect on the Microtexture During βα Phase Transformation in Ti6246 Titanium Alloys[J]. 金属学报, 2025, 61(2): 265-277.
[7] SONG Yushan, LIU Rui, CUI Yu, LIU Li, WANG Fuhui. Stress Corrosion Behavior of Ni-Cr-Mo-V Steel in 3.5%NaCl Solution Under the Interaction of Hydrostatic Pressure and Tensile Stress[J]. 金属学报, 2025, 61(2): 309-322.
[8] YAN Mengqi, WU Zehao, TONG Jianbo, HUANG Lijun, HUANG Yisheng. Preparation of Large-Sized β Grains and Effect of Typical Textures on Mechanical Properties of TC18 Titanium Alloy[J]. 金属学报, 2025, 61(10): 1555-1566.
[9] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[10] ZHU Shaoxiang, WANG Qingjiang, LIU Jianrong, CHEN Zhiyong. Macrosegregation of Zr and Mo in TC19 Titanium Alloy Ingot[J]. 金属学报, 2024, 60(7): 869-880.
[11] CHENG Kun, CHEN Shuming, CAO Shuo, LIU Jianrong, MA Yingjie, FAN Qunbo, CHENG Xingwang, YANG Rui, HU Qingmiao. Precipitation Strengthening in Titanium Alloys from First Principles Investigation[J]. 金属学报, 2024, 60(4): 537-547.
[12] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[13] WANG Yong, ZHANG Weiwen, YANG Chao, WANG Zhi. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure[J]. 金属学报, 2024, 60(2): 247-260.
[14] LIANG Liang, JIANG Zhikang, TAN Huanheng, CHEN Jian, JIANG Changcheng, YI Genmiao, LIN Xingui. Study on Cathodic Protection Assisted Laser Processing (CPALP) for Reducing Titanium Alloy Surface Oxidation[J]. 金属学报, 2024, 60(12): 1607-1614.
[15] ZHANG Shuqian, MA Yingjie, WANG Qian, QI Min, HUANG Sensen, LEI Jiafeng, YANG Rui. Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment[J]. 金属学报, 2024, 60(12): 1622-1636.
No Suggested Reading articles found!