Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (12): 1622-1636    DOI: 10.11900/0412.1961.2022.00490
Research paper Current Issue | Archive | Adv Search |
Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment
ZHANG Shuqian1,2, MA Yingjie2(), WANG Qian2, QI Min1,2, HUANG Sensen2, LEI Jiafeng2, YANG Rui2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Shuqian, MA Yingjie, WANG Qian, QI Min, HUANG Sensen, LEI Jiafeng, YANG Rui. Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment. Acta Metall Sin, 2024, 60(12): 1622-1636.

Download:  HTML  PDF(5059KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Eddy current loss, which produces Joule heat and reduces transmission efficiency, is inevitable when the magnetic coupling is running. Magnetic couplings with high electrical resistivity alloys, such as titanium alloy, have been proven to be effective in suppressing the eddy currents. The Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet was a α + β titanium alloy for marine engineering with high specific strength and electrical resistivity, which was used in magnetic couplings to suppress the eddy currents. In this study, the effect of annealing temperature on the microstructure, mechanical properties, and electrical conductivity of the Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet was investigated. The results revealed that the band structure was arranged along the rolling direction (RD), and the as-rolled titanium alloy sheet showed a typical T-type texture with the c-axis of the α phase approximately parallel to the transverse direction (TD). A considerable increase in tensile strength and decrease in elongation after αβ region (850-920oC) annealing was thought to result from the strengthening of secondary α/β interfaces in the bimodal structure. Simultaneously, the α phase showed both T-type and R-type textures, which also resulted in higher yield strength along the TD of the sheet. Additionally, when the sheet suffered a β phase region annealing (950-1000oC), the elongation immediately decreased due to the coarseness and precipitation of the secondary α and grain boundary α phases, respectively. Meanwhile, the annealed sheet showed an R-type and a new B-type texture components with basal poles rotated 20°-30° away from the normal direction (ND) toward the RD under the influence of variant selection of secondary α phase. However, the yield strength along the TD was still higher than that in the RD, indicating that the effect of texture on yield strength anisotropy was reduced. Finally, the electrical resistivity analysis of the titanium alloy sheet indicated that the electrical resistivity along the RD of the sheet was higher when the band structure was formed and the c-axis of the α phase was concentrated in the TD. However, the disappearance of the band structure and the increase in the volume fraction of the R-type texture will reduce the anisotropy of electrical resistivity.

Key words:  α + β titanium alloy sheet      annealing treatment      microstructure      anisotropy      tensile property      electrical resistivity     
Received:  07 October 2022     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2021YFC2801801);National Natural Science Foundation of China(51871225)
Corresponding Authors:  MA Yingjie, professor, Tel: 13840026329, E-mail: yjma@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00490     OR     https://www.ams.org.cn/EN/Y2024/V60/I12/1622

Fig.1  Schematics of Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr sampling positions
(a) characterization specimen (ND—normal direction, RD—rolling direction, TD—transverse direction)
(b) tensile specimen and electrical resistivity specimen along the RD and TD
(c) tensile specimen dimension (unit: mm)
(d) electrical resistivity specimen dimension (unit: mm)
Fig.2  SEM images of Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet (αp—primary α phase)
(a) RD-ND plane (b) RD-TD plane
Fig.3  Orientation imaging map of α phase in RD-ND plane (a), and pole figures of α phase (b) and β phase (c) in Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet
Fig.4  Low (a-f) and high (a1-f1) magnified SEM images of air-cooled Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet after annealing at 800oC (a, a1), 850oC (b, b1), 900oC (c, c1), 920oC (d, d1), 950oC (e, e1), and 1000oC (f, f1) for 1 h (αs—secondary α phase, αGB—grain boundary α phase, βtβ transformed phase)
Fig.5  Variations of volume fraction of αp phase and βt phase with annealing temperature (a) and variations of grain size of αp phase and αs phase with annealing temperature (b)
Fig.6  Pole figures of α phase obtained by XRD at 800oC (a), 850oC (b), 900oC (c), 920oC (d), 950oC (e), and 1000oC (f)
Fig.7  Pole figures of α phase obtained by EBSD at 800oC (a), 850oC (b), 900oC (c), 920oC (d), 950oC (e), and 1000oC (f)
Fig.8  EBSD analysis results of the 920oC annealed Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet
(a) pole figures of residual β phase
(b) fore scatter diodes (FSD) map
(c) orientation imaging map of α phase in RD-ND plane
Fig.9  Texture analysis results of the 1000oC annealed Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet
(a) misorientation angle distribution of α phase
(b) (0002) pole figure of α phase obtained by XRD
(c) (110) pole figure of residual β phase obtained by XRD
(d) orientation imaging map of α lath I
(e) EBSD measured (0001) pole figure corresponding to α lath I
(f) EBSD measured (110) pole figure corresponding to residual β phase in Fig.9d
(g) orientation imaging map of α lath II
(h) EBSD measured (0001) pole figure corresponding to α lath II
(i) EBSD measured (110) pole figure corresponding to residual β phase in Fig.9g
Fig.10  Tensile properties of Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet at room temperature after annealing at different temperatures
(a) yield strength (Rp0.2) (b) elongation (A)
Fig.11  Schmidt factor distributions along the RD (a) and TD (b) in Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet with different slip systems of α phase
Fig.12  Inverse pole figures of RD and TD of α phase in Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet after annealing at 800oC (a), 900oC (b), 920oC (c), 950oC (d), and 1000oC (e); and inverse pole figures along with isocurves of the maximum Schmidt factor for orientations in which basal slip (f) and prismatic slip (g)
Fig.13  Variations of electrical resistivity of RD and TD (a) and α texture volume fraction with annea-ling temperature (b) in Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet
Fig.14  Effects of texture type on electron scattering of Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet in different directions
1 Wang L, Jia Z Y, Liu X, et al. The key characteristics of the permanent magnet thruster for underwater vehicle [J]. J. Harbin Univ. Sci. Technol., 2020, 25(4): 33
王 雷, 贾振元, 刘 鑫 等. 水下机器人永磁推进器关键特性 [J]. 哈尔滨理工大学学报, 2020, 25(4): 33
2 Gong N N, Zhang B, Li J B. Calculation of eddy losses power of magnetic transmission isolation sleeve [J]. Mech. Eng. Autom., 2018, (6): 200
宫娜娜, 张 波, 李景彬. 磁力传动隔离套涡流损失功率计算 [J]. 机械工程与自动化, 2018, (6): 200
3 Kong F Y, Zhang Y, Shao F, et al. Eddy current loss of containment shell of high-speed magnetic driving pump [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(1): 61
孔繁余, 张 勇, 邵 飞 等. 高速磁力泵隔离套的磁涡流损失 [J]. 农业工程学报, 2012, 28(1): 61
4 Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9: 15360
5 Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
6 Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
7 Du Z X, Xiao S L, Xu L J, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Des., 2014, 55: 183
8 Chen Z Q, Xu L J, Liang Z Q, et al. Effect of solution treatment and aging on microstructure, tensile properties and creep behavior of a hot-rolled β high strength titanium alloy with a composition of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe-0.1B-0.1C [J]. Mater. Sci. Eng., 2021, A823: 141728
9 Xu W J, Tan Y Q, Gong L H, et al. Effect of annealing temperature and cooling rate on microstructure and properties of TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2932
徐戊矫, 谭玉全, 龚利华 等. 退火温度和冷却速率对TC4钛合金组织和性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 2932
10 Fan J K, Li J S, Kou H C, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater. Des., 2015, 83: 499
11 Wang K, Zhao Y Q, Jia W J, et al. Effect of heat treatment on microstructures and properties of Ti90 alloy [J]. Rare Met. Mater. Eng., 2021, 50: 552
王 可, 赵永庆, 贾蔚菊 等. 热处理对Ti90钛合金显微组织及性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 552
12 Li W Y, Liu J R, Chen Z Y, et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32: 455
doi: 10.11901/1005.3093.2017.631
李文渊, 刘建荣, 陈志勇 等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32: 455
doi: 10.11901/1005.3093.2017.631
13 Cheng C, Feng Y, Chen Z Y, et al. Effect of annealing temperature on microstructure, texture and tensile properties of TA32 sheet [J]. Mater. Sci. Eng., 2021, A826: 141971
14 Obasi G C, Birosca S, Leo Prakash D G, et al. The influence of rolling temperature on texture evolution and variant selection during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 6013
15 Stanford N, Bate P S. Crystallographic variant selection in Ti-6Al-4V [J]. Acta Mater., 2004, 52: 5215
16 Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
17 Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet [J]. Acta Mater., 2005, 53: 3535
18 Zheng G M, Li L, Mao X N, et al. Variant selection during titanium alloy BCC↔HCP phase transformation and its effect on crystal orientation [J]. Mater. Rep., 2019, 33: 2910
郑国明, 李 磊, 毛小南 等. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响 [J]. 材料导报, 2019, 33: 2910
19 Obasi G C, Birosca S, da Fonseca J Q, et al. Effect of β grain growth on variant selection and texture memory effect during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 1048
20 Gey N, Humbert M. Characterization of the variant selection occurring during the αβα phase transformations of a cold rolled titanium sheet [J]. Acta Mater., 2002, 50: 277
21 Zhu Z S, Gu J L, Liu R Y, et al. Variant selection and its effect on phase transformation textures in cold rolled titanium sheet [J]. Mater. Sci. Eng., 2000, A280: 199
22 Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin: Springer-Verlag, 2007: 247
23 Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
24 Hou J P, Sun P F, Wang Q, et al. Breaking the trade-off relation between strength and electrical conductivity: Heterogeneous grain design [J]. Acta Metall. Sin., 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
侯嘉鹏, 孙朋飞, 王 强 等. 突破强度-导电率制约关系: 晶粒异构设计 [J]. 金属学报, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
25 Li R, Zuo X W, Wang E G. Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy [J]. Acta Phys. Sin., 2017, 66: 027401
李 蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度 [J]. 物理学报, 2017, 66: 027401
26 Ying T, Zheng M Y, Li Z T, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Al alloys [J]. J. Alloys Compd., 2014, 608: 19
27 Yuan J W, Zhang K, Li T, et al. Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy [J]. Mater. Des., 2012, 40: 257
28 Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley-VCH Verlag GmbH, 2003: 24
29 Liu S L, Lu Y F, Huang X M, et al. Research situation on the effect of manufacturing process and heat treatment on the titanium alloy sheet texture [J]. Metall. Eng., 2015, 2: 144
刘松良, 卢影锋, 黄先明 等. 加工工艺及热处理对钛合金板材织构影响的研究现状 [J]. 冶金工程, 2015, 2: 144
30 Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
31 Zhao Z B, Wang Q J, Liu J R, et al. Texture of Ti60 alloy precision bars and its effect on tensile properties [J]. Acta Metall. Sin., 2015, 51: 561
doi: 10.11900/0412.1961.2014.00451
赵子博, 王清江, 刘建荣 等. Ti60合金棒材中的织构及其对拉伸性能的影响 [J]. 金属学报, 2015, 51: 561
doi: 10.11900/0412.1961.2014.00451
32 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2010: 197
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 197
33 Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
doi: 10.1016/j.jmst.2018.04.002
34 Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
35 Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
36 Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys [J]. Acta Mater., 2008, 56: 4298
37 Gey N, Bocher P, Uta E, et al. Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure [J]. Acta Mater., 2012, 60: 2647
38 Zhou Y, Wang K, Xin R L, et al. Effect of special primary α grain on variant selection of secondary α phase in a near-α titanium alloy [J]. Mater. Lett., 2020, 271: 127766
39 Obasi G C, Moat R J, Leo Prakash D G, et al. In situ neutron diffraction study of texture evolution and variant selection during the αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 7169
40 Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
41 Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during βα phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
42 Yang Y, Lu Y F, Ge P, et al. Variant selection of βα phase transformation in titanium alloys [J]. Mater. Sci., 2014, 4: 197
43 Beladi H, Chao Q, Rohrer G S. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy [J]. Acta Mater., 2014, 80: 478
44 Lei L, Zhao Y Q, Wu C, et al. Variant selection, coarsening behavior of α phase and associated tensile properties in an α + β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99: 101
doi: 10.1016/j.jmst.2021.04.069
45 Zhu Z S, Gu J L, Chen N P. Variant selection in αβα phase transformation of cold rolled titanium sheet [J]. Scr. Mater., 1996, 34: 1281
46 Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy [J]. J. Alloys Compd., 2013, 550: 23
47 Cheng C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate [J]. Acta Metall. Sin., 2020, 56: 193
程 超, 陈志勇, 秦绪山 等. TA32钛合金厚板的微观组织、织构与力学性能 [J]. 金属学报, 2020, 56: 193
48 Luo Y M, Liu J X, Li S K, et al. Anisotropy of mechanical properties and influencing factors of hot rolling TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 2692
骆雨萌, 刘金旭, 李树奎 等. 热轧TC4钛合金力学性能各向异性及影响因素分析 [J]. 稀有金属材料与工程, 2014, 43: 2692
49 Wu D M. Fundamentals of Solid State Physics [M]. Beijing: Higher Education Press, 2007: 84
吴代鸣. 固体物理基础 [M]. 北京: 高等教育出版社, 2007: 84
[1] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[2] GONG Weijia, LIANG Senmao, ZHANG Jingyi, LI Shilei, SUN Yong, LI Zhongkui, LI Jinshan. Effect of Cooling Rate on Hydride Precipitation in Zirconium Alloys[J]. 金属学报, 2024, 60(9): 1155-1164.
[3] CAO Shuting, ZHAO Jian, GONG Tongzhao, ZHANG Shaohua, ZHANG Jian. Effects of Cu Content on the Microstructure and Tensile Property of K4061 Alloy[J]. 金属学报, 2024, 60(9): 1179-1188.
[4] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[5] ZHU Guijie, WANG Siqing, ZHA Min, LI Meijuan, SUN Kai, CHEN Dongfeng. Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets[J]. 金属学报, 2024, 60(8): 1079-1090.
[6] LI Biao, ZHANG Long, YAN Tingyi, FU Huameng, YUAN Xudong, WEN Mingyue, ZHANG Hongwei, LI Hong, ZHANG Haifeng. Effects of Heat Treatment Processes and W Wire Properties on Residual Stress in W Wire Reinforced Zr-Based Metallic Glass Composites[J]. 金属学报, 2024, 60(8): 1055-1063.
[7] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[8] MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. 金属学报, 2024, 60(7): 890-900.
[9] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[10] ZHANG Jingwen, YU Liming, LIU Chenxi, DING Ran, LIU Yongchang. Synergistic Strengthening of High-Cr Martensitic Heat-Resistant Steel and Application of Thermo-Mechanical Treatments[J]. 金属学报, 2024, 60(6): 713-730.
[11] WANG Feng, BAI Shengwei, WANG Zhi, DU Xudong, ZHOU Le, MAO Pingli, WEI Ziqi, LI Jinwei. Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys[J]. 金属学报, 2024, 60(6): 743-759.
[12] LIU Jinlai, SUN Jingxia, MENG Jie, LI Jinguo. Microstructural Stability and Stress Rupture Properties of a Third-Generation Ni Base Single Crystal Supalloy[J]. 金属学报, 2024, 60(6): 770-776.
[13] LI Tianrui, XU Yuqian, WU Wenping, GAN Wenxuan, YANG Yong, LIU Guohuai, WANG Zhaodong. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. 金属学报, 2024, 60(5): 650-660.
[14] WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition[J]. 金属学报, 2024, 60(5): 670-680.
[15] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
No Suggested Reading articles found!