|
|
Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations |
LI Zhishang, ZHAO Long, ZONG Hongxiang( ), DING Xiangdong |
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
LI Zhishang, ZHAO Long, ZONG Hongxiang, DING Xiangdong. Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations. Acta Metall Sin, 2024, 60(10): 1388-1404.
|
Abstract A comprehensive understanding of the microscopic mechanisms underlying phase transitions and deformations in metallic materials is crucial for developing new materials that meet the nation's essential needs. Molecular dynamic simulation techniques, particularly those powered by machine-learning molecular force fields, are emerging as potent tools for unraveling atomic-scale phenomena. In this study, recent advancements in machine-learning molecular force fields were reviewed to investigate metallic phase transitions and deformations. First, the fundamental principles and evolution of machine-learning molecular force fields were introduced. Then, the phase transformation and deformation of metals were examined, providing insights into the kinetics of phase transitions and microscopic mechanisms. Finally, the challenges faced by current machine-learning molecular force fields in studying metallic phase transformations and deformations were identified, and a glimpse into future research directions was discussed.
|
Received: 08 May 2024
|
|
Fund: National Key Research and Development Program of China(2022YFB3707601);National Natural Science Foundation of China(52171011,52322103,12304026) |
Corresponding Authors:
ZONG Hongxiang, professor, Tel: 15029963406, E-mail: zonghust@mail.xjtu.edu.cn
|
1 |
Christian J W. The Theory of Transformations in Metals and Alloys Theory [M]. Oxford: Pergamon Press, 2002: 1
|
2 |
Li J J, Deepak F L. In situ kinetic observations on crystal nucleation and growth [J]. Chem. Rev., 2022, 122: 16911
|
3 |
Schneider D K, Shi W, Andi B, et al. FMX—The frontier microfocusing macromolecular crystallography beamline at the national synchrotron light source II [J]. J. Synchrot. Radiat., 2021, 28: 650
|
4 |
Wang P, Cai W L, Zhang Q, et al. Physical design and performance research of two counter-rotating T0 choppers for the multi-physics neutron diffractometer at China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2023, 1055A: 168520
|
5 |
Liu T W, Liang L W, Raabe D, et al. The martensitic transition pathway in steel [J]. J. Mater. Sci. Technol., 2023, 134: 244
doi: 10.1016/j.jmst.2022.06.023
|
6 |
Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64: 1045
|
7 |
Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55: 2471
pmid: 10032153
|
8 |
Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
|
9 |
Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
|
10 |
Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
|
11 |
Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559: 547
|
12 |
Dragoni D, Daff T D, Csányi G, et al. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron [J]. Phys. Rev. Mater., 2018, 2: 013808
|
13 |
Hansen K, Biegler F, Ramakrishnan R, et al. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space [J]. J. Phys. Chem. Lett., 2015, 6: 2326
pmid: 26113956
|
14 |
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
|
15 |
Zeng J Q, Cao L Q, Xu M Y, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation [J]. Nat. Commun., 2020, 11: 5713
doi: 10.1038/s41467-020-19497-z
pmid: 33177517
|
16 |
Chenoweth K, Van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J]. J. Phys. Chem., 2008, 112A: 1040
|
17 |
Li S Z, Ding X D, Li J, et al. High-efficiency mechanical energy storage and retrieval using interfaces in nanowires [J]. Nano Lett., 2010, 10: 1774
doi: 10.1021/nl100263p
pmid: 20369897
|
18 |
Zhou Y X, Zhang W, Ma E, et al. Device-scale atomistic modelling of phase-change memory materials [J]. Nat. Electron., 2023, 6: 746
|
19 |
Wang G J, Sun Z M. Atomic insights into device-scale phase-change memory materials using machine learning potential [J]. Sci. Bull., 2023, 68: 3105
|
20 |
Artrith N, Kolpak A M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials [J]. Nano Lett., 2014, 14: 2670
doi: 10.1021/nl5005674
pmid: 24742028
|
21 |
Esterhuizen J A, Goldsmith B R, Linic S. Interpretable machine learning for knowledge generation in heterogeneous catalysis [J]. Nat. Catal., 2022, 5: 175
|
22 |
Wang G J, Wang C R, Zhang X G, et al. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations [J]. iScience, 2024, 27: 109673
|
23 |
Ercolessi F, Adams J B. Interatomic potentials from first-principles calculations: The force-matching method [J]. Europhys. Lett., 1994, 26: 583
|
24 |
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
|
25 |
Bartók A P, Csányi G. Gaussian approximation potentials: A brief tutorial introduction [J]. Int. J. Quantum Chem., 2015, 115: 1051
|
26 |
Shao Y Q, Hellström M, Mitev P D, et al. PiNN: A python library for building atomic neural networks of molecules and materials [J]. J. Chem. Inf. Model., 2020, 60: 1184
doi: 10.1021/acs.jcim.9b00994
pmid: 31935100
|
27 |
Behler J. RuNNer—A program for constructing high-dimensional neural network potentials [Z]. Göttingen: Universität Göttingen, 2020
|
28 |
Novikov I S, Gubaev K, Podryabinkin E V, et al. The MLIP package: Moment tensor potentials with MPI and active learning [J]. Mach. Learn., 2021, 2: 025002
|
29 |
Schütt K T, Sauceda H E, Kindermans P J, et al. SchNet—A deep learning architecture for molecules and materials [J]. J. Chem. Phys., 2018, 148: 241722
|
30 |
Chen C, Ong S P. A universal graph deep learning interatomic potential for the periodic table [J]. Nat. Comput. Sci., 2022, 2: 718
doi: 10.1038/s43588-022-00349-3
pmid: 38177366
|
31 |
Deng B W, Zhong P C, Jun K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling [J]. Nat. Mach. Intell., 2023, 5: 1031
|
32 |
Reinhardt A, Cheng B Q. Quantum-mechanical exploration of the phase diagram of water [J]. Nat. Commun., 2021, 12: 588
doi: 10.1038/s41467-020-20821-w
pmid: 33500405
|
33 |
Chen C, Ong S P. AtomSets as a hierarchical transfer learning framework for small and large materials datasets [J]. npj Comput. Mater., 2021, 7: 173
|
34 |
Kaliakin D S, Zaari R R, Varganov S A. 3D printed potential and free energy surfaces for teaching fundamental concepts in physical chemistry [J]. J. Chem. Educ., 2015, 92: 2106
|
35 |
Glass C W, Oganov A R, Hansen N. USPEX—Evolutionary crystal structure prediction [J]. Comput. Phys. Commun., 2006, 175: 713
|
36 |
Wang Y C, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization [J]. Phys. Rev., 2010, 82B: 094116
|
37 |
Wang J Q, Li C C, Shin S, et al. Accelerated atomic data production in ab initio molecular dynamics with recurrent neural network for materials research [J]. J. Phys. Chem., 2020, 124C: 14838
|
38 |
Lima F S, Alves V M C, Araujo A C B. Metacontrol: A python based application for self-optimizing control using metamodels [J]. Comput. Chem. Eng., 2020, 140: 106979
|
39 |
Tang K J, Wan X L, Yang C. DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations [J]. J. Comput. Phys., 2023, 476: 111868
|
40 |
Laio A, Parrinello M. Escaping free-energy minima [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 12562
pmid: 12271136
|
41 |
Montalenti F, Voter A F. Exploiting past visits or minimum-barrier knowledge to gain further boost in the temperature-accelerated dynamics method [J]. J. Chem. Phys., 2002, 116: 4819
|
42 |
Berg B A, Neuhaus T. Multicanonical ensemble: A new approach to simulate first-order phase transitions [J]. Phys. Rev. Lett., 1992, 68: 9
pmid: 10045099
|
43 |
Wang F G, Landau D P. Efficient, multiple-range random walk algorithm to calculate the density of states [J]. Phys. Rev. Lett., 2001, 86: 2050
pmid: 11289852
|
44 |
Skilling J. Nested sampling for general Bayesian computation [J]. Bayesian Anal, 2006, 1: 833
|
45 |
Morozov A N, Lin S H. Accuracy and convergence of the Wang-Landau sampling algorithm [J]. Phys. Rev., 2007, 76E: 026701
|
46 |
Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
|
47 |
Huo H Y, Rupp M. Unified representation of molecules and crystals for machine learning [J]. Mach. Learn., 2022, 3: 045017
|
48 |
Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J]. J. Chem. Phys., 2011, 134: 074106
|
49 |
Damewood J, Karaguesian J, Lunger J R, et al. Representations of materials for machine learning [J]. Annu. Rev. Mater. Res., 2023, 53: 399
|
50 |
Rupp M, Tkatchenko A, Müller K R, et al. Fast and accurate modeling of molecular atomization energies with machine learning [J]. Phys. Rev. Lett., 2012, 108: 058301
|
51 |
Sanchez J M, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems [J]. Physica, 1984, 128A: 334
|
52 |
Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints [A]. Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 [C]. Montreal: MIT Press, 2015: 28
|
53 |
Reiser P, Neubert M, Eberhard A, et al. Graph neural networks for materials science and chemistry [J]. Commun. Mater., 2022, 3: 93
|
54 |
Thompson A P, Swiler L P, Trott C R, et al. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials [J]. J. Comput. Phys., 2015, 285: 316
|
55 |
Shapeev A V. Moment tensor potentials: A class of systematically improvable interatomic potentials [J]. Multiscale Model. Simul., 2016, 14: 1153
|
56 |
Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations [J]. Phys. Rev., 2015, 92B: 094306
|
57 |
Bartók A P, Payne M C, Kondor R, et al. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons [J]. Phys. Rev. Lett., 2010, 104: 136403
|
58 |
Park C W, Kornbluth M, Vandermause J, et al. Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture [J]. npj Comput. Mater., 2021, 7: 73
|
59 |
Gasteiger J, Groß J, Günnemann S. Directional message passing for molecular graphs [DB/OL]. arXiv: 2003. 03123, 2020
|
60 |
Gasteiger J, Giri S, Margraf J T, et al. Fast and uncertainty-aware directional message passing for non-equilibrium molecules [DB/OL]. arXiv: 2011. 14115, 2020
|
61 |
Kung S Y. Kernel Methods and Machine Learning [M]. Cambridge: Cambridge University Press, 2014: 16
|
62 |
Bartók A P, Kermode J, Bernstein N, et al. Machine learning a general-purpose interatomic potential for silicon [J]. Phys. Rev., 2018, 8X: 041048
|
63 |
Sastry S, Austen Angell C. Liquid-liquid phase transition in supercooled silicon [J]. Nat. Mater., 2003, 2: 739
pmid: 14556000
|
64 |
Fan Z, Tanaka H. Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon [J]. Nat. Commun., 2024, 15: 368
doi: 10.1038/s41467-023-44332-6
pmid: 38228606
|
65 |
Lorenz S, Groß A, Scheffler M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks [J]. Chem. Phys. Lett., 2004, 395: 210
|
66 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
67 |
Ghasemi S A, Hofstetter A, Saha S, et al. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network [J]. Phys. Rev., 2015, 92B: 045131
|
68 |
Khorshidi A, Peterson A A. Amp: A modular approach to machine learning in atomistic simulations [J]. Comput. Phys. Commun., 2016, 207: 310
|
69 |
Chen M S, Morawietz T, Mori H, et al. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials [J]. J. Chem. Phys., 2021, 155: 074801
|
70 |
Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J]. Comput. Phys. Commun., 2022, 271: 108171
|
71 |
Zeng J Z, Zhang D, Lu D H, et al. DeePMD-kit v2: A software package for deep potential models [J]. J. Chem. Phys., 2023, 159: 054801
|
72 |
Lu D H, Wang H, Chen M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy [J]. Comput. Phys. Commun., 2021, 259: 107624
|
73 |
Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A] SC20: International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020
|
74 |
Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
|
75 |
Chen C, Ye W K, Zuo Y X, et al. Graph networks as a universal machine learning framework for molecules and crystals [J]. Chem. Mater., 2019, 31: 3564
doi: 10.1021/acs.chemmater.9b01294
|
76 |
Tran K, Ulissi Z W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution [J]. Nat. Catal., 2018, 1: 696
|
77 |
Park C W, Wolverton C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery [J]. Phys. Rev. Mater., 2020, 4: 063801
|
78 |
Gu G H, Jang J, Noh J, et al. Perovskite synthesizability using graph neural networks [J]. npj Comput. Mater., 2022, 8: 71
|
79 |
Lee J, Asahi R. Transfer learning for materials informatics using crystal graph convolutional neural network [J]. Comput. Mater. Sci., 2021, 190: 110314
|
80 |
Chanussot L, Das A, Goyal S, et al. Open catalyst 2020 (OC20) dataset and community challenges [J]. ACS Catal., 2021, 11: 6059
|
81 |
Wang G J, Sun Y Q, Zhou J, et al. PotentialMind: Graph convolutional machine learning potential for Sb-Te binary compounds of multiple stoichiometries [J]. J. Phys. Chem., 2023, 127C: 24724
|
82 |
Gasteiger J, Becker F, Günnemann S. GemNet: Universal directional graph neural networks for molecules [A]. 35th International Conference on Neural Information Processing Systems [C]. Red Hook: Curran Associates Inc., 2021: 6790
|
83 |
Xie S R, Rupp M, Hennig R G. Ultra-fast interpretable machine-learning potentials [J]. npj Comput. Mater., 2023, 9: 162
|
84 |
Ma Y G, Pang L G, Wang R, et al. Phase transition study meets machine learning [J]. Chin. Phys. Lett., 2023, 40: 122101
|
85 |
Salmenjoki H, Alava M J, Laurson L. Machine learning plastic deformation of crystals [J]. Nat. Commun., 2018, 9: 5307
doi: 10.1038/s41467-018-07737-2
pmid: 30546114
|
86 |
Pizzagalli L, Demenet J L, Rabier J. Theoretical study of pressure effect on the dislocation core properties in semiconductors [J]. Phys. Rev., 2009, 79B: 045203
|
87 |
Landa A, Klepeis J, Söderlind P, et al. Ab initio calculations of elastic constants of the bcc V-Nb system at high pressures [J]. J. Phys. Chem. Solids, 2006, 67: 2056
|
88 |
Marian J, Cai W, Bulatov V V. Dynamic transitions from smooth to rough to twinning in dislocation motion [J]. Nat. Mater., 2004, 3: 158
pmid: 14991017
|
89 |
Jin Z H, Gao H J, Gumbsch P. Energy radiation and limiting speeds of fast moving edge dislocations in tungsten [J]. Phys. Rev., 2008, 77B: 094303
|
90 |
Maresca F, Dragoni D, Csányi G, et al. Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential [J]. npj Comput. Mater., 2018, 4: 69
|
91 |
Li X Z, Han C X, Yue X D, et al. Influence of interfacial dislocation network on strain-rate sensitivity in Ni-based single crystal superalloys [J]. Scr. Mater., 2024, 240: 115838
|
92 |
Chen B, Li S Z, Ding J, et al. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys [J]. Scr. Mater., 2023, 222: 115048
|
93 |
Yin S, Zuo Y X, Abu-Odeh A, et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order [J]. Nat. Commun., 2021, 12: 4873
doi: 10.1038/s41467-021-25134-0
pmid: 34381027
|
94 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
doi: 10.1073/pnas.1919136117
pmid: 32601202
|
95 |
Zheng H, Fey L T W, Li X G, et al. Multi-scale investigation of short-range order and dislocation glide in MoNbTi and TaNbTi multi-principal element alloys [J]. npj Comput. Mater., 2023, 9: 89
|
96 |
Li X G, Xu S Z, Zhang Q, et al. Complex strengthening mechanisms in nanocrystalline Ni-Mo alloys revealed by a machine-learning interatomic potential [J]. J. Alloy. Compd., 2023, 952: 169964
|
97 |
Li X G, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J]. npj Comput. Mater., 2020, 6: 70
|
98 |
Zhao L, Zong H X, Ding X D, et al. Anomalous dislocation core structure in shock compressed bcc high-entropy alloys [J]. Acta Mater., 2021, 209: 116801
|
99 |
Li H J, Zhao L, Ding X D, et al. The role of chemical disorder in β→ω phase transformation and deformation twinning in shock compressed Zr-Nb alloys [Z]. Available at SSRN 4717843
|
100 |
He R H, Hashimoto M, Karapetyan H, et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions [J]. Science, 2011, 331: 1579
|
101 |
Yeh A, Soh Y A, Brooke J, et al. Quantum phase transition in a common metal [J]. Nature, 2002, 419: 459
|
102 |
Gyorffy B L, Pindor A J, Staunton J, et al. A first-principles theory of ferromagnetic phase transitions in metals [J]. J. Phys., 1985, 15F: 1337
|
103 |
Jamieson J C. Crystal structures of titanium, zirconium, and hafnium at high pressures [J]. Science, 1963, 140: 72
pmid: 17746009
|
104 |
Zong H X, He P, Ding X D, et al. Nucleation mechanism for hcp→bcc phase transformation in shock-compressed Zr [J]. Phys. Rev., 2020, 101B: 144105
|
105 |
Zong H X, Luo Y F, Ding X D, et al. hcp→ω phase transition mechanisms in shocked zirconium: A machine learning based atomic simulation study [J]. Acta Mater., 2019, 162: 126
|
106 |
Zong H X, Pilania G, Ding X D, et al. Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning [J]. npj Comput. Mater., 2018, 4: 48
|
107 |
Wang H, Dmowski W, Wang Z, et al. Transformation pathway from alpha to omega and texture evolution in Zr via high-pressure torsion [J]. Appl. Phys. Lett., 2019, 114: 061903
|
108 |
Li H J, Zhao L, Zong H X, et al. Enhancing the stability of the ω phase of zirconium alloys via local interlayer twists [J]. Phys. Rev., 2023, 107B: 184117
|
109 |
Nitol M S, Dickel D E, Barrett C D. Machine learning models for predictive materials science from fundamental physics: An application to titanium and zirconium [J]. Acta Mater., 2022, 224: 117347
|
110 |
Deng X Z, Lang L, Mo Y F, et al. Solid-solid phase transition of tungsten induced by high pressure: A molecular dynamics simulation [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2980
|
111 |
Kruglov I A, Yanilkin A, Oganov A R, et al. Phase diagram of uranium from ab initio calculations and machine learning [J]. Phys. Rev., 2019, 100B: 174104
|
112 |
Tang H, Zhang Y, Li Q J, et al. High accuracy neural network interatomic potential for NiTi shape memory alloy [J]. Acta Mater., 2022, 238: 118217
|
113 |
Kostiuchenko T, Körmann F, Neugebauer J, et al. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials [J]. npj Comput. Mater., 2019, 5: 55
|
114 |
Bardeen J. Compressibilities of the alkali metals [J]. J. Chem. Phys., 1938, 6: 372
|
115 |
Gingrich N S, Heaton L. Structure of alkali metals in the liquid state [J]. J. Chem. Phys., 1961, 34: 873
|
116 |
Zhao L, Zong H X, Ding X D, et al. Commensurate-incommensurate phase transition of dense potassium simulated by machine-learned interatomic potential [J]. Phys. Rev., 2019, 100B: 220101
|
117 |
Zhao L, Zong H X, Ding X D, et al. Anomalous thermophysical properties and electride transition in fcc potassium [J]. Phys. Rev., 2021, 104B: 104107
|
118 |
Robinson V N, Zong H X, Ackland G J, et al. On the chain-melted phase of matter [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 10297
doi: 10.1073/pnas.1900985116
pmid: 30975752
|
119 |
Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9
pmid: 32461573
|
120 |
Zong H X, Robinson V N, Hermann A, et al. Free electron to electride transition in dense liquid potassium [J]. Nat. Phys., 2021, 17: 955
|
121 |
Polsin D N, Lazicki A, Gong X C, et al. Structural complexity in ramp-compressed sodium to 480 GPa [J]. Nat. Commun., 2022, 13: 2534
doi: 10.1038/s41467-022-29813-4
pmid: 35534461
|
122 |
Jain A, Ong S P, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
|
123 |
Kirklin S, Saal J E, Meredig B, et al. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies [J]. npj Comput. Mater., 2015, 1: 15010
|
124 |
Jain A, Hautier G, Moore C J, et al. A high-throughput infrastructure for density functional theory calculations [J]. Comput. Mater. Sci., 2011, 50: 2295
|
125 |
Landis D D, Hummelshøj J S, Nestorov S, et al. The computational materials repository [J]. Comput. Sci. Eng., 2012, 14: 51
|
126 |
Curtarolo S, Setyawan W, Wang S D, et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
|
127 |
Wang G J, Peng L Y, Li K Q, et al. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
|
128 |
Wells B A, Chaffee A L. Ewald summation for molecular simulations [J]. J. Chem. Theory Comput., 2015, 11: 3684
doi: 10.1021/acs.jctc.5b00093
pmid: 26574452
|
129 |
Cerutti D S, Duke R E, Darden T A, et al. Staggered mesh Ewald: An extension of the smooth particle-mesh Ewald method adding great versatility [J]. J. Chem. Theory Comput., 2009, 5: 2322
doi: 10.1021/ct9001015
pmid: 20174456
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|