Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences
XIONG Tianying, WANG Jiqiang()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article:
XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences. Acta Metall Sin, 2023, 59(4): 537-546.
Owing to low spraying temperature and high particle velocity, cold spray is a rapidly developing solid-material deposition technology that has broad application prospects in areas of metal coating preparation, additive manufacturing, and component repair. The Institute of Metal Research, Chinese Academy of Sciences, has conducted extensive research on cold spray, including the exploration of bonding mechanism, strategies and methods of tailoring microstructures and properties of deposits, and application of the cold spray technology. This paper systematically introduces the research progress of cold spray by the Institute of Metal Research, Chinese Academy of Sciences.
Fund: National Natural Science Foundation of China(52271078);National Natural Science Foundation of China(51801217);National Natural Science Foundation of China(51671205)
Corresponding Authors:
WANG Jiqiang, professor, Tel: (024)23971743, E-mail: jqwang11s@imr.ac.cn
Fig.2 SEM images of as-sprayed single 316L particles on pure Al (a), pure Cu (b), AISI1015 mild steel (c), 7075T6 Al alloy (d), Inconel625 (e), and Ti6Al4V (f) (Spray condition: 800oC, 3.5 MPa)[6]
Fig.3 EDS mapping (a) and HRTEM image with fast fourier transform (FFT) patterns (insets) (b) of Cu/Zn particles' interface[8] (IMC—intermetallic compound)
Fig.4 High angle annular dark field image of scanning transmission electron microscopy (STEM-HAADF image) of the Al/polyether ether ketone (PEEK) interface (a) and corresponding EDS mapping (b); HRTEM image of the Al/PEEK interface with FFT patterns (insets) (c); magnified views of the Al/amorphous oxide interface (d) and PEEK/amorphous oxide interface (e), respectively[9]
Fig.5 Schematics elaborating crack propagation behavior in XY plane (a), YZ plane (b), and in three-dimension (c) of cold sprayed 7075 aluminum alloy[10]
Fig.6 SEM images of Ta powders with coral (a) and irregular (b) shape[13]
Fig.7 Schematic of principle of laser-assisted cold spray
Fig.8 Microstructures of cold sprayed A380 aluminum alloy before (a) and after (b) hot rolling with thickness reduction of 40%, and tensile stress-strain curves of as-sprayed and hot rolled samples with thickness reduction of 20% (Rolled-20) and 40% (Rolled-40) (c) (Inset in Fig.8c shows dimensions of tensile test sample)[21]
Fig.9 Schematics of the preparation process of Ti/steel by cold spray, hot rolling, and annealing[38]
1
Assadi H, Gärtner F, Stoltenhoff T, et al. Bonding mechanism in cold gas spraying [J]. Acta Mater., 2003, 51: 4379
doi: 10.1016/S1359-6454(03)00274-X
Huang W, Xue Z L, Liu X, et al. Preparation and friction-wear property of plasma-sprayed CoCrAlTaY-Al2O3 coating [J]. Chin. J. Rare Met., 2021, 45: 836
Fu W, Wu S G, Chen Q Y, et al. Microstructure and properties of high velocity oxygen fuel sprayed WC-Co-Ni coatings [J]. Chin. J. Rare Met., 2021, 45: 673
Alkimov A P, Kosarev V F, Papyrin A N. A method of cold gas-dynamic spraying [J]. Doklady Akademii Nauk Sssr, 1990, 315: 1062
6
Ma G L, Cui X Y, Shen Y F, et al. Influence of substrate mechanical properties on deposition behaviour of 316L stainless steel powder [J]. Acta Metall. Sin., 2016, 52: 1610
Zhao Z P, Tang J R, Du H, et al. In-situ chemical interaction in cold-sprayed Zn/Cu composite coating [J]. Mater. Lett., 2018, 228: 246
doi: 10.1016/j.matlet.2018.06.024
9
Liu H H, Tariq N U H, Ren Y P, et al. Beneficial role of the continuous powder oxide film in establishing chemical bonding at cold sprayed Al coating/PEEK substrate interface [J]. Appl. Surf. Sci., 2022, 601: 154234
doi: 10.1016/j.apsusc.2022.154234
10
Ren Y P, Tariq N U H, Liu H H, et al. Study of microstructural and mechanical anisotropy of 7075 Al deposits fabricated by cold spray additive manufacturing [J]. Mater. Des., 2021, 212: 110271
doi: 10.1016/j.matdes.2021.110271
11
Liu H H, Ren Y P, Li T F, et al. Pores in cold sprayed deposits and their control methods [J]. Mater. Prot., 2022, 55(1): 1
Tang J R, Zhao Z P, Li N, et al. Influence of feedstock powder on microstructure and mechanical properties of Ta cold spray depositions [J]. Surf. Coat. Technol., 2019, 377: 124903
doi: 10.1016/j.surfcoat.2019.124903
14
Wang J Q, Cui X Y, Xiong T Y. Research progress of cold sprayed metal matrix composite coatings and materials [J]. China Surf. Eng., 2020, 33(4): 51
Qiu X, Tariq N U H, Qi L, et al. Effects of dissimilar alumina particulates on microstructure and properties of cold-sprayed alumina/A380 composite coatings [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1449
doi: 10.1007/s40195-019-00917-z
16
Qiu X, Tariq N U H, Wang J Q, et al. Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique [J]. Surf. Coat. Technol., 2018, 350: 391
doi: 10.1016/j.surfcoat.2018.07.039
17
Qiu X, Tariq N U H, Qi L, et al. A hybrid approach to improve microstructure and mechanical properties of cold spray additively manufactured A380 aluminum composites [J]. Mater. Sci. Eng., 2020, A772: 138828
18
Qiu X, Tariq NH, Qi L, et al. Influence of particulate morphology on microstructure and tribological properties of cold sprayed A380/Al2O3 composite coatings [J]. J. Mater. Sci. Technol., 2020, 44: 9
doi: 10.1016/j.jmst.2020.01.028
19
Bray M, Cockburn A, O'Neill W. The laser-assisted cold spray process and deposit characterisation [J]. Surf. Coat. Technol., 2009, 203: 2851
doi: 10.1016/j.surfcoat.2009.02.135
20
Qiu X, Wang J Q, Tariq N H, et al. Effect of heat treatment on microstructure and mechanical properties of A380 aluminum alloy deposited by cold spray [J]. J. Thermal Spray Technol., 2017, 26: 1898
doi: 10.1007/s11666-017-0640-8
21
Qiu X, Tariq N U H, Qi L, et al. In-situ Sip/A380 alloy Nano/Micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment: Microstructure and mechanical properties [J]. J. Alloys Compd., 2019, 780: 597
doi: 10.1016/j.jallcom.2018.11.399
22
Tariq N H, Gyansah L, Qiu X, et al. Thermo-mechanical post-treatment: A strategic approach to improve microstructure and mechanical properties of cold spray additively manufactured composites [J]. Mater. Des., 2018, 156: 287
doi: 10.1016/j.matdes.2018.06.062
23
Tariq N U H, Gyansah L, Qiu X, et al. Achieving strength-ductility synergy in cold spray additively manufactured Al/B4C composites through a hybrid post-deposition treatment [J]. J. Mater. Sci. Technol., 2019, 35: 1053
doi: 10.1016/j.jmst.2018.12.022
24
Tao Y S, Xiong T Y, Sun C, et al. Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2009, 256: 261
doi: 10.1016/j.apsusc.2009.08.012
25
Tao Y S, Xiong T Y, Sun C, et al. Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy [J]. Corros. Sci., 2010, 52: 3191
doi: 10.1016/j.corsci.2010.05.023
26
Zhao Z P, Tang J R, Tariq N H, et al. Microstructure and corrosion behavior of cold-sprayed Zn-Al composite coating [J]. Coatings, 2020, 10: 931
doi: 10.3390/coatings10100931
27
Wang J Q, Kong L Y, Li T F, et al. Oxidation behavior of thermal barrier coatings with a TiAl3 bond coat on γ-TiAl Alloy [J]. J. Therm. Spray Technol., 2015, 24: 467
doi: 10.1007/s11666-014-0186-y
28
Wang J Q, Kong L Y, Li T F, et al. Microstructure evolution of cold-sprayed Al-Si alloy coatings on γ-TiAl during heat treatment [J]. J. Therm. Spray Technol., 2015, 24: 1071
doi: 10.1007/s11666-015-0273-8
29
Wang J Q, Kong L Y, Wu J, et al. Microstructure evolution and oxidation resistance of silicon-aluminizing coating on γ-TiAl alloy [J]. Appl. Surf. Sci., 2015, 356: 827
doi: 10.1016/j.apsusc.2015.08.204
30
Huang J, Zhao F, Cui X Y, et al. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy [J]. Appl. Surf. Sci., 2022, 582: 152444
doi: 10.1016/j.apsusc.2022.152444
31
Liu H H, Tariq N U H, Ren Y P, et al. Effect of accelerating gas temperature on microstructure and properties of cold sprayed Al coating on polyether ether ketone (PEEK) [J]. Surf. Coat. Technol., 2022, 429: 127972
doi: 10.1016/j.surfcoat.2021.127972
32
Liu H H, Tariq N U H, Ren Y P, et al. Influence of Al2O3 content on microstructure, electrical conductivity and adhesion strength of cold sprayed Al-Al2O3 coatings on PEEK substrate [J]. Surf. Coat. Technol., 2022, 446: 128752
doi: 10.1016/j.surfcoat.2022.128752
33
Tariq N H, Gyansah L, Wang J Q, et al. Cold spray additive manufacturing: A viable strategy to fabricate thick B4C/Al composite coatings for neutron shielding applications [J]. Surf. Coat. Technol., 2018, 339: 224
doi: 10.1016/j.surfcoat.2018.02.007
34
Zhao L J, Tariq N U H, Ren Y P, et al. Effect of particle size on ceramic particle content in cold sprayed Al-based metal matrix composite coating [J]. J. Therm. Spray Technol., 2022, 31: 2505
doi: 10.1007/s11666-022-01457-2
35
Tang J R, Zhao Z P, Cui X Y, et al. Microstructure and bioactivity of a cold sprayed rough/porous Ta coating on Ti6Al4V substrate [J]. Sci. China Technol. Sci., 2020, 63: 731
doi: 10.1007/s11431-019-1446-0
36
Tang J R, Liu H Y, Guo M X, et al. Enhanced spreading, migration and osteodifferentiation of HBMSCs on macroporous CS-Ta—A biocompatible macroporous coating for hard tissue repair [J]. Mater. Sci. Eng., 2021, C129: 112411
37
Tang J R, Zhao Z P, Liu H S, et al. A novel bioactive Ta/hydroxyapatite composite coating fabricated by cold spraying [J]. Mater. Lett., 2019, 250: 197
doi: 10.1016/j.matlet.2019.04.123
38
Zhao Z P, Tariq N U H, Tang J R, et al. Microstructural evolutions and mechanical characteristics of Ti/steel clad plates fabricated through cold spray additive manufacturing followed by hot-rolling and annealing [J]. Mater. Des., 2020, 185: 108249
doi: 10.1016/j.matdes.2019.108249
39
Zhao Z P, Tang J R, Tariq N U H, et al. Effect of rolling temperature on microstructure and mechanical properties of Ti/steel clad plates fabricated by cold spraying and hot-rolling [J]. Mater. Sci. Eng., 2020, A795: 139982
40
Zhao Z P, Tariq N U H, Tang J R, et al. Influence of annealing on the microstructure and mechanical properties of Ti/steel clad plates fabricated via cold spray additive manufacturing and hot-rolling [J]. Mater. Sci. Eng., 2020, A775: 138968
41
Ren Y P, Tariq N U H, Liu H H, et al. An innovative and flexible approach to fabricate Mg/Al composite plates: Cold spraying and hot rolling post-treatment [J]. Mater. Sci. Eng., 2022, A849: 143515
42
Ren Y P, Tariq N H, Liu H H, et al. Unraveling the effects of hot rolling on microstructure and mechanical properties of cold sprayed Mg/Al clad plates [J]. Mater. Today Commun., 2022, 33: 104553
43
Tang J R, Tariq N U H, Zhao Z P, et al. Microstructure and mechanical properties of Ti-Ta composites prepared through cold spray additive manufacturing [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1465
doi: 10.1007/s40195-022-01387-6