|
|
Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion |
WANG Jingyang( ), SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion. Acta Metall Sin, 2023, 59(4): 523-536.
|
Abstract High thrust-to-weight ratios and high propulsion are necessary requirements for revolutionizing the aviation technology. Emerging hot-section engine components are currently focused on SiCf/SiC ceramic matrix composite materials, wherein the environmental barrier coatings (EBCs) are needed to protect the engine components from the harsh combustion environment. Due to their matched thermal expansion coefficient and good chemical compatibility with the SiCf/SiC ceramic matrix composites substrates, rare earth (RE) silicates have been identified as promising EBC materials. However, they cannot provide reliable protection for the engine components when the working temperature rises over 1300oC, mainly because of their poor resistance to the low melting point oxides CaO-MgO-Al2O3-SiO2 (CMAS) melts. This review discusses the current state of research on the CMAS corrosion resistance of RE silicates. First, the interaction and degradation mechanisms of single-RE-component RE2SiO5 and RE2Si2O7 are discussed, and the different roles of RE species in reacting with CMAS melts are summarized. Then, the concept of high-entropy design is introduced, enabling synergistic optimization of the effects of multiple RE species in terms of CMAS resistance, by delicately designing the multi-RE-component (nRE x ) compositions. Such a strategy leads to enhanced CMAS corrosion resistance in some novel (nRE x )2SiO5 and (nRE x )2Si2O7 materials. Finally, potential prospects, opportunities, and challenges for high-entropy RE silicates as EBC materials are discussed.
|
Received: 01 November 2022
|
|
Fund: National Natural Science Foundation of China(U21A2063);National Natural Science Foundation of China(52002376);National Key Research and Development Program of China(2021YFB3702300);National Science and Technology Major Project of China(2017-VI-0020-0093);Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2);Liaoning Revitalization Talents Program(XLYC200-2018) |
Corresponding Authors:
WANG Jingyang, professor, Tel: (024)23971762, E-mail: jywang@imr.ac.cn
|
1 |
Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nat. Mater., 2016, 15: 804
doi: 10.1038/nmat4687
pmid: 27443899
|
2 |
Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
|
3 |
Lee K N, Fox D S, Bansal N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J]. J. Eur. Ceram. Soc., 2005, 25: 1705
doi: 10.1016/j.jeurceramsoc.2004.12.013
|
4 |
Tejero-Martin D, Bennett C, Hussain T. A review on environmental barrier coatings: History, current state of the art and future developments [J]. J. Eur. Ceram. Soc., 2021, 41: 1747
doi: 10.1016/j.jeurceramsoc.2020.10.057
|
5 |
Zhu D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components [A]. Engineered Ceramics: Current Status and Future Prospects [M]. New Jersey: John Wiley & Sons, Inc., 2016: 187
|
6 |
Felsche J. The crystal chemistry of the rare-earth silicates [A]. Structure and Bonding 13 [M]. Heidelberg: Springer Berlin, 1973: 99
|
7 |
Tian Z L, Wang J Y. Research progress of rare earth silicate ceramics [J]. Adv. Ceram., 2018, 39: 295
|
|
田志林, 王京阳. 稀土硅酸盐陶瓷材料研究进展 [J]. 现代技术陶瓷, 2018, 39: 295
|
8 |
Luo Y X, Wang J Y. Thermal properties of rare-earth disilicates: Material genome and coordinated mechanism [J]. Mater. China, 2019, 38: 866
|
|
罗颐秀, 王京阳. 稀土双硅酸盐热学性能的基因与协调机制 [J]. 中国材料进展, 2019, 38: 866
|
9 |
Klemm H. Silicon nitride for high-temperature applications [J]. J. Am. Ceram. Soc., 2010, 93: 1501
doi: 10.1111/jace.2010.93.issue-6
|
10 |
Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
doi: 10.1146/matsci.2017.47.issue-1
|
11 |
Grant K M, Krämer S, Löfvander J P A, et al. CMAS degradation of environmental barrier coatings [J]. Surf. Coat. Technol., 2007, 202: 653
doi: 10.1016/j.surfcoat.2007.06.045
|
12 |
Levi C G, Hutchinson J W, Vidal-Sétif M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits [J]. MRS Bull., 2012, 37: 932
doi: 10.1557/mrs.2012.230
|
13 |
Nieto A, Agrawal R, Bravo L, et al. Calcia-magnesia-alumina-silicate (CMAS) attack mechanisms and roadmap towards sandphobic thermal and environmental barrier coatings [J]. Int. Mater. Rev., 2021, 66: 451
doi: 10.1080/09506608.2020.1824414
|
14 |
Smialek J L, Archer F A, Garlick R G. The chemistry of Saudi Arabian sand: A deposition problem on helicopter turbine airfoils [A]. Advances in Synthesis and Processes [C]. Covina: SAMPE, 1992: 20
|
15 |
Wolf M, Mack D E, Guillon O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium-aluminosilicate (CMAS): A comparative study [J]. J. Am. Ceram. Soc., 2020, 103: 7056
doi: 10.1111/jace.v103.12
|
16 |
Stokes J L, Harder B J, Wiesner V L, et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials [J]. J. Am. Ceram. Soc., 2020, 103: 622
doi: 10.1111/jace.v103.1
|
17 |
Jiang F R, Cheng L F, Wang Y G. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium-aluminosilicate attack [J]. Ceram. Int., 2017, 43: 9019
doi: 10.1016/j.ceramint.2017.04.045
|
18 |
Webster R I, Opila E J. Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium-magnesium-alumino-silicate resistance [J]. J. Mater. Res., 2020, 35: 2358
doi: 10.1557/jmr.2020.151
|
19 |
Poerschke D L, Shaw J H, Verma N, et al. Interaction of yttrium disilicate environmental barrier coatings with calcium-magnesium-iron alumino-silicate melts [J]. Acta Mater., 2018, 145: 451
doi: 10.1016/j.actamat.2017.12.004
|
20 |
Wiesner V L, Harder B J, Garg A, et al. Molten calcium-magnesium-aluminosilicate interactions with ytterbium disilicate environmental barrier coating [J]. J. Mater. Res., 2020, 35: 2346
doi: 10.1557/jmr.2020.211
|
21 |
Tian Z L, Zhang J, Zheng L Y, et al. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300oC [J]. Corros. Sci., 2019, 148: 281
doi: 10.1016/j.corsci.2018.12.032
|
22 |
Tian Z L, Zhang J, Zhang T Y, et al. Towards thermal barrier coating application for rare earth silicates RE2SiO5 (RE = La, Nd, Sm, Eu, and Gd) [J]. J. Eur. Ceram. Soc., 2019, 39: 1463
doi: 10.1016/j.jeurceramsoc.2018.12.015
|
23 |
Tian Z L, Ren X M, Lei Y M, et al. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures [J]. J. Eur. Ceram. Soc., 2019, 39: 4245
doi: 10.1016/j.jeurceramsoc.2019.05.036
|
24 |
Poerschke D L, Barth T L, Fabrichnaya O, et al. Phase equilibria and crystal chemistry in the calcia-silica-yttria system [J]. J. Eur. Ceram. Soc., 2016, 36: 1743
doi: 10.1016/j.jeurceramsoc.2016.01.046
|
25 |
Turcer L R, Padture N P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics [J]. Scr. Mater., 2018, 154: 111
doi: 10.1016/j.scriptamat.2018.05.032
|
26 |
Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485
pmid: 26415623
|
27 |
Xiang H M, Xing Y, Dai F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward [J]. J. Adv. Ceram., 2021, 10: 385
doi: 10.1007/s40145-021-0477-y
|
28 |
Sun L C, Luo Y X, Ren X M, et al. A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability [J]. Mater. Res. Lett., 2020, 8: 424
doi: 10.1080/21663831.2020.1783007
|
29 |
Gild J, Zhang Y Y, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Sci. Rep., 2016, 6: 37946
doi: 10.1038/srep37946
pmid: 27897255
|
30 |
Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nat. Commun., 2018, 9: 4980
doi: 10.1038/s41467-018-07160-7
pmid: 30478375
|
31 |
Jin T, Sang X H, Unocic R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy [J]. Adv. Mater., 2018, 30: 1707512
doi: 10.1002/adma.v30.23
|
32 |
Zhang R Z, Gucci Z, Zhu H Y, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides [J]. Inorg. Chem., 2018, 57: 13027
doi: 10.1021/acs.inorgchem.8b02379
|
33 |
Gild J, Braun J, Kaufmann K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 [J]. J. Materiomics, 2019, 5: 337
doi: 10.1016/j.jmat.2019.03.002
|
34 |
Sarkar A, Breitung B, Hahn H. High entropy oxides: The role of entropy, enthalpy and synergy [J]. Scr. Mater., 2020, 187: 43
doi: 10.1016/j.scriptamat.2020.05.019
|
35 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
|
36 |
Dong Y, Ren K, Lu Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites [J]. J. Eur. Ceram. Soc., 2019, 39: 2574
doi: 10.1016/j.jeurceramsoc.2019.02.022
|
37 |
Fan D, Zhong X, Zhang Z Z, et al. Interaction of high-entropy rare-earth monosilicate environmental barrier coatings subjected to corrosion by calcium-magnesium-alumino-silicate melts [J]. Corros. Sci., 2022, 207: 110564
doi: 10.1016/j.corsci.2022.110564
|
38 |
Wang X, Cheng M H, Xiao G Z, et al. Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics [J]. Corros. Sci., 2021, 192: 109786
doi: 10.1016/j.corsci.2021.109786
|
39 |
Chen Z L, Tian Z L, Zheng L Y, et al. (Ho0.25Lu0.25Yb0.25Eu0.25)2SiO5 high-entropy ceramic with low thermal conductivity, tunable thermal expansion coefficient, and excellent resistance to CMAS corrosion [J]. J. Adv. Ceram., 2022, 11: 1279
doi: 10.1007/s40145-022-0609-z
|
40 |
Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
doi: 10.1016/j.corsci.2022.110217
|
41 |
Ren X M, Tian Z L, Zhang J, et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material [J]. Scr. Mater., 2019, 168: 47
doi: 10.1016/j.scriptamat.2019.04.018
|
42 |
Ren X M. Design, processing and properties of high entropy rare earth monosilicates as thermal and environment barrier coating materials [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2022
|
|
任孝旻. 高熵稀土单硅酸盐热障/环境障涂层材料的设计、制备和性能研究 [D]. 合肥: 中国科学技术大学 (中国科学院金属研究所), 2022
|
43 |
Ren X M, Zhang J, Wang J Y. Composition effects on elastic, thermal and corrosion properties of multiple-RE silicate (Ho1/4Er1/4Yb1/4-Lu1/4)2SiO5 as a promising thermal and environmental barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 7258
doi: 10.1016/j.jeurceramsoc.2022.08.034
|
44 |
Sun L C, Luo Y X, Tian Z L, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS) [J]. Corros. Sci., 2020, 175: 108881
doi: 10.1016/j.corsci.2020.108881
|
45 |
Sun L C, Ren X M, Luo Y X, et al. Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500oC for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate [J]. Corros. Sci., 2022, 203: 110343
doi: 10.1016/j.corsci.2022.110343
|
46 |
Sun L C, Ren X M, Du T F, et al. High entropy engineering: New strategy for the critical property optimizations of rare earth silicates [J]. J. Inorg. Mater., 2021, 36: 339
doi: 10.15541/jim20200611
|
|
孙鲁超, 任孝旻, 杜铁锋 等. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略 [J]. 无机材料学报, 2021, 36: 339
doi: 10.15541/jim20200611
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|