Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (4): 523-536    DOI: 10.11900/0412.1961.2022.00556
Overview Current Issue | Archive | Adv Search |
Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion
WANG Jingyang(), SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion. Acta Metall Sin, 2023, 59(4): 523-536.

Download:  HTML  PDF(3844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High thrust-to-weight ratios and high propulsion are necessary requirements for revolutionizing the aviation technology. Emerging hot-section engine components are currently focused on SiCf/SiC ceramic matrix composite materials, wherein the environmental barrier coatings (EBCs) are needed to protect the engine components from the harsh combustion environment. Due to their matched thermal expansion coefficient and good chemical compatibility with the SiCf/SiC ceramic matrix composites substrates, rare earth (RE) silicates have been identified as promising EBC materials. However, they cannot provide reliable protection for the engine components when the working temperature rises over 1300oC, mainly because of their poor resistance to the low melting point oxides CaO-MgO-Al2O3-SiO2 (CMAS) melts. This review discusses the current state of research on the CMAS corrosion resistance of RE silicates. First, the interaction and degradation mechanisms of single-RE-component RE2SiO5 and RE2Si2O7 are discussed, and the different roles of RE species in reacting with CMAS melts are summarized. Then, the concept of high-entropy design is introduced, enabling synergistic optimization of the effects of multiple RE species in terms of CMAS resistance, by delicately designing the multi-RE-component (nRE x ) compositions. Such a strategy leads to enhanced CMAS corrosion resistance in some novel (nRE x )2SiO5 and (nRE x )2Si2O7 materials. Finally, potential prospects, opportunities, and challenges for high-entropy RE silicates as EBC materials are discussed.

Key words:  environmental barrier coating      rare earth silicate      high-entropy ceramic      CMAS corrosion     
Received:  01 November 2022     
ZTFLH:  TB32  
Fund: National Natural Science Foundation of China(U21A2063);National Natural Science Foundation of China(52002376);National Key Research and Development Program of China(2021YFB3702300);National Science and Technology Major Project of China(2017-VI-0020-0093);Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2);Liaoning Revitalization Talents Program(XLYC200-2018)
Corresponding Authors:  WANG Jingyang, professor, Tel: (024)23971762, E-mail: jywang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00556     OR     https://www.ams.org.cn/EN/Y2023/V59/I4/523

Fig.1  Cross-section images (a, i, q) and high magnification views of reaction zone (b, c, j, k, r, s), EDS elements mapping of cross sections (d-f, l-n, t-v), surface morphologies (g, o, w), and XRD spectra (h, p, x) of Tb2SiO5 (a-h), Er2SiO5 (i-p), and Tm2SiO5 (q-x) after low melting point oxides CaO-MgO-Al2O3-SiO2 (CMAS) corrosion at 1300oC for 50 h (G represents CMAS melts; A represents apatite phase)[21]
Fig.2  Schematic diagrams of the performances of RE2SiO5 after CMAS corrosion at 1300oC for 50 h[21]
Fig.3  Bright field TEM image (a), HAADF-STEM image (b), and Fourier transform diffraction pattern (c) of (Y1/4Ho1/4Er1/4Yb1/4)2-SiO5; simulated crystal structure along [010] zone axis of X2-RE2SiO5 (a, b, c—lattice axis) (d) and corresponding elemental EDS maps, showing the uniform spatial distributions for Si (e), Y (f), Ho (g), Er (h), and Yb (i)[42]
Fig.4  XRD spectra (a, e), surface morphologies (b, f), and cross section morphologies (c, d, g, h) of (4RE1/4)2SiO5 after 50 h CMAS corrosion at 1300oC[42]

Element

(Y1/4Ho1/4Er1/4Yb1/4)2SiO5(Ho1/4Er1/4Yb1/4Lu1/4)2SiO5
Reaction precipitation layerCooling precipitation layerReaction precipitation layerCooling precipitation layer
Y4.32 ± 0.316.19 ± 0.45--
Ho3.80 ± 0.295.85 ± 0.473.90 ± 0.316.48 ± 0.54
Er3.65 ± 0.295.73 ± 0.493.66 ± 0.346.14 ± 0.55
Yb3.00 ± 0.254.77 ± 0.423.07 ± 0.275.17 ± 0.47
Lu--2.74 ± 0.314.62 ± 0.54
Ca3.97 ± 0.277.19 ± 0.483.95 ± 0.287.53 ± 0.53
RE∶Ca3.723.133.342.98
Table 1  EDS analysis apatite phases in reaction precipitation layer and cooling precipitation layer for (4RE1/4)2SiO5 after CMAS corrosion at 1500oC for 4 h[41]
Fig.5  Morphologies of the cross-sections of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 after CMAS corrosion at 1500oC for 4 h (a) and 50 h (c), together with corresponding EDS elements mapping results for 4 h (a-1-a-8) and 50 h (c-1-c-8) by electron probe microanalysis, compared with those of Yb2Si2O7 (b) and Lu2Si2O7 (d) after CMAS corrosion at 1500oC for 25 h[45]
Fig.6  Schematic diagrams for the interaction between CMAS and (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 high-entropy disilicate at 1500oC[45]
1 Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nat. Mater., 2016, 15: 804
doi: 10.1038/nmat4687 pmid: 27443899
2 Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
3 Lee K N, Fox D S, Bansal N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J]. J. Eur. Ceram. Soc., 2005, 25: 1705
doi: 10.1016/j.jeurceramsoc.2004.12.013
4 Tejero-Martin D, Bennett C, Hussain T. A review on environmental barrier coatings: History, current state of the art and future developments [J]. J. Eur. Ceram. Soc., 2021, 41: 1747
doi: 10.1016/j.jeurceramsoc.2020.10.057
5 Zhu D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components [A]. Engineered Ceramics: Current Status and Future Prospects [M]. New Jersey: John Wiley & Sons, Inc., 2016: 187
6 Felsche J. The crystal chemistry of the rare-earth silicates [A]. Structure and Bonding 13 [M]. Heidelberg: Springer Berlin, 1973: 99
7 Tian Z L, Wang J Y. Research progress of rare earth silicate ceramics [J]. Adv. Ceram., 2018, 39: 295
田志林, 王京阳. 稀土硅酸盐陶瓷材料研究进展 [J]. 现代技术陶瓷, 2018, 39: 295
8 Luo Y X, Wang J Y. Thermal properties of rare-earth disilicates: Material genome and coordinated mechanism [J]. Mater. China, 2019, 38: 866
罗颐秀, 王京阳. 稀土双硅酸盐热学性能的基因与协调机制 [J]. 中国材料进展, 2019, 38: 866
9 Klemm H. Silicon nitride for high-temperature applications [J]. J. Am. Ceram. Soc., 2010, 93: 1501
doi: 10.1111/jace.2010.93.issue-6
10 Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
doi: 10.1146/matsci.2017.47.issue-1
11 Grant K M, Krämer S, Löfvander J P A, et al. CMAS degradation of environmental barrier coatings [J]. Surf. Coat. Technol., 2007, 202: 653
doi: 10.1016/j.surfcoat.2007.06.045
12 Levi C G, Hutchinson J W, Vidal-Sétif M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits [J]. MRS Bull., 2012, 37: 932
doi: 10.1557/mrs.2012.230
13 Nieto A, Agrawal R, Bravo L, et al. Calcia-magnesia-alumina-silicate (CMAS) attack mechanisms and roadmap towards sandphobic thermal and environmental barrier coatings [J]. Int. Mater. Rev., 2021, 66: 451
doi: 10.1080/09506608.2020.1824414
14 Smialek J L, Archer F A, Garlick R G. The chemistry of Saudi Arabian sand: A deposition problem on helicopter turbine airfoils [A]. Advances in Synthesis and Processes [C]. Covina: SAMPE, 1992: 20
15 Wolf M, Mack D E, Guillon O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium-aluminosilicate (CMAS): A comparative study [J]. J. Am. Ceram. Soc., 2020, 103: 7056
doi: 10.1111/jace.v103.12
16 Stokes J L, Harder B J, Wiesner V L, et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials [J]. J. Am. Ceram. Soc., 2020, 103: 622
doi: 10.1111/jace.v103.1
17 Jiang F R, Cheng L F, Wang Y G. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium-aluminosilicate attack [J]. Ceram. Int., 2017, 43: 9019
doi: 10.1016/j.ceramint.2017.04.045
18 Webster R I, Opila E J. Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium-magnesium-alumino-silicate resistance [J]. J. Mater. Res., 2020, 35: 2358
doi: 10.1557/jmr.2020.151
19 Poerschke D L, Shaw J H, Verma N, et al. Interaction of yttrium disilicate environmental barrier coatings with calcium-magnesium-iron alumino-silicate melts [J]. Acta Mater., 2018, 145: 451
doi: 10.1016/j.actamat.2017.12.004
20 Wiesner V L, Harder B J, Garg A, et al. Molten calcium-magnesium-aluminosilicate interactions with ytterbium disilicate environmental barrier coating [J]. J. Mater. Res., 2020, 35: 2346
doi: 10.1557/jmr.2020.211
21 Tian Z L, Zhang J, Zheng L Y, et al. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300oC [J]. Corros. Sci., 2019, 148: 281
doi: 10.1016/j.corsci.2018.12.032
22 Tian Z L, Zhang J, Zhang T Y, et al. Towards thermal barrier coating application for rare earth silicates RE2SiO5 (RE = La, Nd, Sm, Eu, and Gd) [J]. J. Eur. Ceram. Soc., 2019, 39: 1463
doi: 10.1016/j.jeurceramsoc.2018.12.015
23 Tian Z L, Ren X M, Lei Y M, et al. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures [J]. J. Eur. Ceram. Soc., 2019, 39: 4245
doi: 10.1016/j.jeurceramsoc.2019.05.036
24 Poerschke D L, Barth T L, Fabrichnaya O, et al. Phase equilibria and crystal chemistry in the calcia-silica-yttria system [J]. J. Eur. Ceram. Soc., 2016, 36: 1743
doi: 10.1016/j.jeurceramsoc.2016.01.046
25 Turcer L R, Padture N P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics [J]. Scr. Mater., 2018, 154: 111
doi: 10.1016/j.scriptamat.2018.05.032
26 Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485 pmid: 26415623
27 Xiang H M, Xing Y, Dai F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward [J]. J. Adv. Ceram., 2021, 10: 385
doi: 10.1007/s40145-021-0477-y
28 Sun L C, Luo Y X, Ren X M, et al. A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability [J]. Mater. Res. Lett., 2020, 8: 424
doi: 10.1080/21663831.2020.1783007
29 Gild J, Zhang Y Y, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Sci. Rep., 2016, 6: 37946
doi: 10.1038/srep37946 pmid: 27897255
30 Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nat. Commun., 2018, 9: 4980
doi: 10.1038/s41467-018-07160-7 pmid: 30478375
31 Jin T, Sang X H, Unocic R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy [J]. Adv. Mater., 2018, 30: 1707512
doi: 10.1002/adma.v30.23
32 Zhang R Z, Gucci Z, Zhu H Y, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides [J]. Inorg. Chem., 2018, 57: 13027
doi: 10.1021/acs.inorgchem.8b02379
33 Gild J, Braun J, Kaufmann K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 [J]. J. Materiomics, 2019, 5: 337
doi: 10.1016/j.jmat.2019.03.002
34 Sarkar A, Breitung B, Hahn H. High entropy oxides: The role of entropy, enthalpy and synergy [J]. Scr. Mater., 2020, 187: 43
doi: 10.1016/j.scriptamat.2020.05.019
35 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
36 Dong Y, Ren K, Lu Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites [J]. J. Eur. Ceram. Soc., 2019, 39: 2574
doi: 10.1016/j.jeurceramsoc.2019.02.022
37 Fan D, Zhong X, Zhang Z Z, et al. Interaction of high-entropy rare-earth monosilicate environmental barrier coatings subjected to corrosion by calcium-magnesium-alumino-silicate melts [J]. Corros. Sci., 2022, 207: 110564
doi: 10.1016/j.corsci.2022.110564
38 Wang X, Cheng M H, Xiao G Z, et al. Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics [J]. Corros. Sci., 2021, 192: 109786
doi: 10.1016/j.corsci.2021.109786
39 Chen Z L, Tian Z L, Zheng L Y, et al. (Ho0.25Lu0.25Yb0.25Eu0.25)2SiO5 high-entropy ceramic with low thermal conductivity, tunable thermal expansion coefficient, and excellent resistance to CMAS corrosion [J]. J. Adv. Ceram., 2022, 11: 1279
doi: 10.1007/s40145-022-0609-z
40 Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
doi: 10.1016/j.corsci.2022.110217
41 Ren X M, Tian Z L, Zhang J, et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material [J]. Scr. Mater., 2019, 168: 47
doi: 10.1016/j.scriptamat.2019.04.018
42 Ren X M. Design, processing and properties of high entropy rare earth monosilicates as thermal and environment barrier coating materials [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2022
任孝旻. 高熵稀土单硅酸盐热障/环境障涂层材料的设计、制备和性能研究 [D]. 合肥: 中国科学技术大学 (中国科学院金属研究所), 2022
43 Ren X M, Zhang J, Wang J Y. Composition effects on elastic, thermal and corrosion properties of multiple-RE silicate (Ho1/4Er1/4Yb1/4-Lu1/4)2SiO5 as a promising thermal and environmental barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 7258
doi: 10.1016/j.jeurceramsoc.2022.08.034
44 Sun L C, Luo Y X, Tian Z L, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS) [J]. Corros. Sci., 2020, 175: 108881
doi: 10.1016/j.corsci.2020.108881
45 Sun L C, Ren X M, Luo Y X, et al. Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500oC for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate [J]. Corros. Sci., 2022, 203: 110343
doi: 10.1016/j.corsci.2022.110343
46 Sun L C, Ren X M, Du T F, et al. High entropy engineering: New strategy for the critical property optimizations of rare earth silicates [J]. J. Inorg. Mater., 2021, 36: 339
doi: 10.15541/jim20200611
孙鲁超, 任孝旻, 杜铁锋 等. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略 [J]. 无机材料学报, 2021, 36: 339
doi: 10.15541/jim20200611
[1] GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. 金属学报, 2021, 57(9): 1184-1198.
No Suggested Reading articles found!