Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (11): 1349-1359    DOI: 10.11900/0412.1961.2022.00327
Overview Current Issue | Archive | Adv Search |
Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening
WU Xiaolei1(), ZHU Yuntian2,3()
1.State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
2.Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
3.Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening. Acta Metall Sin, 2022, 58(11): 1349-1359.

Download:  HTML  PDF(1875KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Strong and tough metallic materials are desired for light-weight structural applications in transportation and aerospace industries. Recently, heterostructures have been found to possess unprecedented strength-and-ductility synergy, which is until now considered impossible to achieve. Heterostructured metallic materials comprise heterogeneous zones with dramatic variations (> 100%) particularly in mechanical properties. The interaction in these hetero-zones produces a synergistic effect wherein the integrated property exceeds the prediction by the rule-of-mixtures. More importantly, the heterostructured materials can be produced by current industrial facilities at large scale and low cost. The superior properties of heterostructured materials are attributed to the heterodeformation induced (HDI) strengthening and strain hardening, which is produced by the piling-up of geometrically necessary dislocations (GNDs). These GNDs are needed to accommodate the strain gradient near hetero-zone boundaries, across which there is high mechanical incompatibility and strain partitioning. This paper classifies the types of heterostructures and delineates the deformation behavior and mechanisms of heterostructured materials.

Key words:  heterostructure      heterostructure unit      strain gradient      geometrically necessary dislocation      strain hardening      ductility      gradient structure      lamellar structure     
Received:  04 July 2022     
ZTFLH:  TG14  
Fund: National Key Research and Development Program of China(2017YFA0204402/3);National Key Research and Development Program of China(2019YFA0209902);National Natural Science Foundation of China(11988102);National Natural Science Foundation of China(11972350);National Natural Science Foundation of China(51931003);Strategic Priority Research Program of Chinese Academy of Sciences(XDB22040503)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00327     OR     https://www.ams.org.cn/EN/Y2022/V58/I11/1349

Fig.1  Heterostructures (HSs) in metallic materials
(a, b) zone HSs. Typical examples are gradient structure (a) and lamellar structure (b) (Thick dull-red lines: hetero-zone boundaries; NG: nano-grain; CG: coarse grain)
(c) sub-zone HSs of four kinds, respectively, with the low-angle grain boundary (LAGB), nano-twin (NT), nano-precipitate (NP), and chemical short-range order (CSRO) inside the grain interior, all independently as the sub-constituent of HSs
(d) composite-like HSs, usually with dual-gradients in both grain size and nano-twin (left)/nano-precipitate (right)
Fig.2  Schematic of characteristic zones in a heterostructure (Upper panel: yield strength (σy), plastic strain (εp), and strain gradient (λ), all as a function of grain size. Thereinto, σy obeys the Hall-Petch relationship, while both εp and λ are of the plasticity-related size effect[28,29]. Shadow area: the maximal strain gradient and strongest strain hardening, usually in the micron range, as the criterion for the HS design[24,26,27]. Lower panel: characteristic HS zones, with a sharply contrasting (σy, εp) combination for the hard/soft zones. HB: hetero-zone boundary. NG here represents nano-grain of high-density dislocation tangles at/inside both the boundaries and interiors)
Fig.3  Two characteristic mechanical responses during tensile deformation in heterostructures
(a) distribution of λ. Upon straining, the initial HB extends to the hetero-zone boundary affected region (HBAR)[27,52]
(b) mechanical hysteresis loop during unload-reload cycle[55] (σyu and σyr: yield stresses upon unload and reload, respectively; εrp (the maximal loop width): residual plastic strain)
Fig.4  Hetero-deformation-induced stress (HDI-stress) in terms of the geometrically necessary dislocation (GND) pile-up
(a) back stress (σback) and forward stress (σforward) exerted on CG and NG, respectively, as a function of distance inside the hetero-zone boundary affected region (HBAR). F-R: Frank-Reed source to form the dislocation pile-up on the slip plane. Blue arrow: indefinite scope of σforward to extend into the nano-grains so far due to the lack of the experimental and theoretical evidences (b, c) dislocation pile-up in heterostructures[24,53]
Fig.5  Dynamic dislocation evolution in response to plastic deformation in heterostructured interstitial-free steel[33]
(a) initially entangled dislocations of high density at/inside both the hetero-boundary and interiors
(b) dis-entanglement of dislocations (c) newly-generated dislocations
Fig.6  Normalized strain hardening rate (Θ = σε) by flow stress (σf) vs true strain (Dash horizontal line: the onset of diffuse necking according to the Considère criterion)
Fig.7  Strength-and-ductility balance in metallic materials (Two areas in blue and pink: ultra-high strength (> 1.5 GPa) alloys all with the nanostructure as the matrix; HEA: high-entropy alloy; S-P: single phase)
1 Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866 pmid: 20395503
2 Ashby M F. Materials Selection in Mechanical Design [M]. 3rd Ed., Oxford: Elsevier, 2005: 1
3 Valiev R Z, Alexandrov I V, Zhu Y T, et al. Paradox of strength and ductility in metals processed bysevere plastic deformation [J]. J. Mater. Res., 2002, 17: 5
doi: 10.1557/JMR.2002.0002
4 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
5 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent Internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
6 Koch C C, Morris D G, Lu K, et al. Ductility of nanostructured materials [J]. MRS Bull., 1999, 24: 54
7 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
8 Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals [J]. Scr. Mater., 2003, 49: 663
doi: 10.1016/S1359-6462(03)00396-8
9 Zhu Y T, Liao X Z. Nanostructured metals—Retaining ductility [J]. Nat. Mater., 2004, 3: 351
doi: 10.1038/nmat1141
10 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
11 Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
doi: 10.1016/j.mattod.2020.04.005
12 Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
13 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177 pmid: 21330487
14 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
15 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
16 Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
pmid: 16614217
17 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
18 Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
doi: 10.1016/j.matdes.2017.07.054
19 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
20 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
21 Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Adv. Mater., 2006, 18: 2280
doi: 10.1002/adma.200600310
22 Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
23 Cottrell A H. Commentary. A brief view of work hardening [J]. Dislocat. Solids, 2002, 11: vii
24 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
25 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
26 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
27 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
28 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
29 Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scr. Mater., 2003, 48: 113
doi: 10.1016/S1359-6462(02)00329-9
30 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
31 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
32 Chen A Y, Li D F, Zhang J B, et al. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scr. Mater., 2008, 59: 579
doi: 10.1016/j.scriptamat.2008.04.048
33 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
34 Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
doi: 10.1016/j.actamat.2017.12.028
35 Li J J, Soh A K. Modeling of the plastic deformation of nanostructured materials with grain size gradient [J]. Int. J. Plast., 2012, 39: 88
doi: 10.1016/j.ijplas.2012.06.004
36 Roumina R, Embury J D, Bouaziz O, et al. Mechanical behavior of a compositionally graded 300M steel [J]. Mater. Sci. Eng., 2013, A578: 140
37 Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials—Presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
doi: 10.1179/026708399101505581
38 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
39 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
40 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
41 Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z pmid: 32404913
42 Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals [J]. Acta Metall., 1983, 31: 1367
doi: 10.1016/0001-6160(83)90007-X
43 Gibeling J G, Nix W D. A numerical study of long range internal stresses associated with subgrain boundaries [J]. Acta Metall., 1980, 28: 1743
doi: 10.1016/0001-6160(80)90027-9
44 Llorca J, Needleman A, Suresh S. The bauschinger effect in whisker-reinforced metal-matrix composites [J]. Scr. Metall. Mater., 1990, 24: 1203
doi: 10.1016/0956-716X(90)90328-E
45 Kuhlmann-Wilsdorf D, Laird C. Dislocation behavior in fatigue II. Friction stress and back stress as inferred from an analysis of hysteresis loops [J]. Mater. Sci. Eng., 1979, 37: 111
doi: 10.1016/0025-5416(79)90074-0
46 Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
47 Wu X L, Zhu Y T, Lu K. Ductility and strain hardening in gradient and lamellar structured materials [J]. Scr. Mater., 2020, 186: 321
doi: 10.1016/j.scriptamat.2020.05.025
48 Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
49 Li J G, Zhang Q, Huang R R, et al. Towards understanding the structure-property relationships of heterogeneous-structured materials [J]. Scr. Mater., 2020, 186: 304
doi: 10.1016/j.scriptamat.2020.05.013
50 Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
51 Lu K. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
doi: 10.11900/0412.1961.2014.00395
卢 柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1
52 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
53 Zhou H, Huang C X, Sha X C, et al. In-situ observation of dislocation dynamics near heterostructured interfaces [J]. Mater. Res. Lett., 2019, 7: 376
doi: 10.1080/21663831.2019.1616330
54 Li J C M, Chau C C. Internal stresses in plasticity, microplasticity and ductile fracture [J]. Mater. Sci. Eng., 2006, A421: 103
55 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
56 Orowan E. Causes and effects of internal stresses [A]. Internal Stress and Fatigue in Metals [M]. London: Elsevier, 1959: 59
57 Osborne P W. On the nature of the long-range back stress in copper [J]. Acta Metall., 1964, 12: 747
doi: 10.1016/0001-6160(64)90226-3
58 Mughrabi H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity [J]. Mater. Sci. Eng., 2001, A317: 171
59 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
60 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
61 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1 pmid: 31819051
62 Wu X L, Yang M X, Yuan F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility [J]. Acta Mater., 2016, 112: 337
doi: 10.1016/j.actamat.2016.04.045
63 Zhang S D, Yang M X, Yuan F P, et al. Extraordinary fracture toughness in nickel induced by heterogeneous grain structure [J]. Mater. Sci. Eng., 2022, A830: 142313
64 Cao R Q, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials [J]. Mater. Today, 2020, 32: 94
doi: 10.1016/j.mattod.2019.09.023
65 Niu G, Zurob H S, Misra R D K, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure [J]. Acta Mater., 2022, 226: 117642
doi: 10.1016/j.actamat.2022.117642
66 Zhao H Z, You Z S, Tao N R, et al. Anisotropic toughening of nanotwin bundles in the heterogeneous nanostructured Cu [J]. Acta Mater., 2022, 228: 117748
doi: 10.1016/j.actamat.2022.117748
67 Xiong L, You Z S, Qu S D, et al. Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles [J]. Acta Mater., 2018, 150: 130
doi: 10.1016/j.actamat.2018.02.065
68 Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scr. Mater., 2006, 54: 1949
doi: 10.1016/j.scriptamat.2006.01.049
69 Long J Z, Pan Q S, Tao N R, et al. Improved fatigue resistance of gradient nanograined Cu [J]. Acta Mater., 2019, 166: 56
doi: 10.1016/j.actamat.2018.12.018
70 Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
doi: 10.1016/j.actamat.2015.11.015
71 Zhou X, Li X Y, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size [J]. Sci. Adv., 2018, 360: 526
72 Chen X, Han Z, Li X Y, et al. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures [J]. Sci. Adv., 2016, 2: e1601942
doi: 10.1126/sciadv.1601942
73 Wang H T, Tao N R, Lu K. Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains [J]. Acta Mater., 2012, 60: 4027
doi: 10.1016/j.actamat.2012.03.035
74 Cheng Z, Bu L F, Zhang Y, et al. Unraveling the origin of extra strengthening in gradient nanotwinned metals [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2116808119
doi: 10.1073/pnas.2116808119
75 Brown L M, Stobbs W M. The work-hardening of copper-silica [J]. Philos. Mag., 1971, 23: 1185
doi: 10.1080/14786437108217405
76 Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proc. Roy. Soc., 1957, 241A: 376
77 Atkinson J D, Brown L M, Stobbs W M. The work-hardening of copper-silica: IV. The Bauschinger effect and plastic relaxation [J]. Philos. Mag., 1974, 30: 1247
doi: 10.1080/14786437408207280
78 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
79 Wang J, Jiang P, Yuan F P, et al. Chemical medium-range order in a medium-entropy alloy [J]. Nat. Commun., 2022, 13: 1021
doi: 10.1038/s41467-022-28687-w pmid: 35197473
80 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
81 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
82 Li J J, Chen S H, Weng G J, et al. A micromechanical model for heterogeneous nanograined metals with shape effect of inclusions and geometrically necessary dislocation pileups at the domain boundary [J]. Int. J. Plast., 2021, 144: 103024
doi: 10.1016/j.ijplas.2021.103024
83 Li J J, Soh A K. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 085002
84 Hughes D A, Hansen N, Bammann D J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations [J]. Scr. Mater., 2003, 48: 147
doi: 10.1016/S1359-6462(02)00358-5
85 Wei Y G, Xu G S. A multiscale model for the ductile fracture of crystalline materials [J]. Int. J. Plast., 2005, 21: 2123
doi: 10.1016/j.ijplas.2005.04.003
86 Wu X L, Yang M X, Li R G, et al. Plastic accommodation during tensile deformation of gradient structure [J]. Sci. China Mater., 2021, 64: 1534
doi: 10.1007/s40843-020-1545-2
87 Wang Y F, Wang M S, Fang X T, et al. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces [J]. Int. J. Plast., 2019, 123: 196
doi: 10.1016/j.ijplas.2019.07.019
88 Wang Y F, Huang C X, Li Y S, et al. Dense dispersed shear bands in gradient-structured Ni [J]. Int. J. Plast., 2020, 124: 186
doi: 10.1016/j.ijplas.2019.08.012
89 Liu X R, Feng H, Wang J, et al. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108: 256
doi: 10.1016/j.jmst.2021.08.057
90 Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
91 Zhang C, Zhu C Y, Cao P H, et al. Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy [J]. Acta Mater., 2020, 199: 602
doi: 10.1016/j.actamat.2020.08.043
92 Lu W J, Luo X, Ning D, et al. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112: 195
doi: 10.1016/j.jmst.2021.09.058
93 Slone C E, Miao J, George E P, et al. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures [J]. Acta Mater., 2019, 165: 496
doi: 10.1016/j.actamat.2018.12.015
94 Shukla S, Choudhuri D, Wang T H, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy [J]. Mater. Res. Lett., 2018, 6: 676
doi: 10.1080/21663831.2018.1538023
95 He F, Yang Z S, Liu S F, et al. Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength [J]. Int. J. Plast., 2021, 144: 103022
doi: 10.1016/j.ijplas.2021.103022
96 Xiang Y, Vlassak J J. Bauschinger effect in thin metal films [J]. Scr. Mater., 2005, 53: 177
doi: 10.1016/j.scriptamat.2005.03.048
97 Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J]. Acta Mater., 1999, 47: 3617
doi: 10.1016/S1359-6454(99)00222-0
98 Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
doi: 10.1016/S0022-5096(97)00086-0
99 Yuan F P, Yan D S, Sun J D, et al. Ductility by shear band delocalization in the nano-layer of gradient structure [J]. Mater. Res. Lett., 2019, 7: 12
doi: 10.1080/21663831.2018.1546238
100 Wilson D V, Bate P S. Influences of cell walls and grain boundaries on transient responses of an IF steel to changes in strain path [J]. Acta Metall. Mater., 1994, 42: 1099
doi: 10.1016/0956-7151(94)90127-9
101 Asaro R J. Micromechanics of crystals and polycrystals [J]. Adv. Appl. Mech., 1983, 23: 1
102 Wei Y G, Wang X Z, Zhao M H. Size effect measurement and characterization in nanoindentation test [J]. J. Mater. Res., 2004, 19: 208
doi: 10.1557/jmr.2004.19.1.208
103 Wei Y G, Wu X L. A trans-scale linkage model and application to analyses of nanocrystalline Al-alloy material [A]. Advances in Nonlinear Mechanical Properties of Materilas [C]. Beijing: China Machine Press, 2021: 62
Wei Y G, Wu X L. A trans-scale linkage model and application to analyses of nanocrystalline Al-alloy material [A]. 材料的非线性力学性能研究进展 [C]. 北京: 机械工业出版社, 2021: 62
104 Tian Y Z, Zhao L J, Park N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility [J]. Acta Mater., 2016, 110: 61
doi: 10.1016/j.actamat.2016.03.015
105 Li J J, Weng G J, Chen S H, et al. On strain hardening mechanism in gradient nanostructures [J]. Int. J. Plast., 2017, 88: 89
doi: 10.1016/j.ijplas.2016.10.003
106 Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
107 Li Z M, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Sci. Rep., 2017, 7: 40704
doi: 10.1038/srep40704 pmid: 28079175
108 He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
doi: 10.1016/j.actamat.2013.09.037
109 Cao F H, Wang Y J, Dai L H. Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment [J]. Acta Mater., 2020, 194: 283
doi: 10.1016/j.actamat.2020.05.042
110 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
111 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
112 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
113 Ma Y, Yang M X, Jiang P, et al. Plastic deformation mechanisms in a severely deformed Fe-Ni-Al-C alloy with superior tensile properties [J]. Sci. Rep., 2017, 7: 15619
doi: 10.1038/s41598-017-15905-5 pmid: 29142214
114 Furuta T, Kuramoto S, Ohsuna T, et al. Die-hard plastic deformation behavior in an ultrahigh-strength Fe-Ni-Al-C alloy [J]. Scr. Mater., 2015, 101: 87
doi: 10.1016/j.scriptamat.2015.01.025
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[3] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[4] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[5] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[6] ZHANG Hai-Tian, ZHANG Xiangyi. Heterostructured Functional Materials with Ordered Structures[J]. 金属学报, 2022, 58(11): 1459-1466.
[7] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[8] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[9] AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy[J]. 金属学报, 2022, 58(11): 1441-1458.
[10] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[11] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[12] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[13] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[14] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[15] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
No Suggested Reading articles found!