Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (1): 67-74    DOI: 10.11900/0412.1961.2020.00496
Research paper Current Issue | Archive | Adv Search |
Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment
CAO Chao1, JIANG Chengyang1(), LU Jintao2(), CHEN Minghui1, GENG Shujiang1, WANG Fuhui1
1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2. National Energy R&D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi'an Thermal Power Research Institute Co. , Ltd. , Xi'an 710032, China
Cite this article: 

CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment. Acta Metall Sin, 2022, 58(1): 67-74.

Download:  HTML  PDF(3599KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid increase in thermal power generation units in China, the thermal power generation industry is facing pressures such as reducing costs, improving power generation efficiency and mitigating environmental problems. Thermal power generation units with a large capacity and high parameters result in high system efficiency, but they also amplify the corrosion failure problem of high-temperature components, especially the atmosphere/ash corrosion of outer tubes. Many studies regarding flue gas corrosion have shown that molten alkali metal sulfate can form on the surface of pipelines, causing severe corrosion damage, and the extent of corrosion is closely related to the sulfur content in raw coal. However, much attention has been paid to low-sulfur (standard coal combustion) environments in previous studies, with very few studies on high-sulfur environments. Austenitic stainless steels possessing a combination of excellent high temperature corrosion and fatigue resistances, are considered as promising construction materials for high temperature components in supercritical and ultra-supercritical fossil fuel power plants. Elements such as Cr and Nb have been shown to greatly affect the high temperature corrosion resistance of austenitic stainless steels; however few reports are available regarding the effect of Cr on corrosion resistance in high-sulfur flue gas environments and the effect of Nb on the corrosion resistance of Cr2O3-forming alloys. Therefore, in this study, the corrosion behavior of three types of austenitic stainless steels with different Cr contents was studied in a coal ash/high-sulfur flue gas environment at 700oC. Results showed that low Cr alloys formed a two-layered structure: an external Fe2O3 layer and an internal layer with Cr2O3 and CrS. Medium Cr alloys developed a similar structure oxide scale to low Cr concentration alloys, but the corrosion extent was modest. Conversely, a stable and dense Cr2O3 layer was formed on the surface of the high Cr alloys, showing higher corrosion resistance than the other two alloys. The Nb in the alloys had some influence on the corrosion resistance of the alloys. The NbC in the alloys oxidized to Nb2O5 and distributed in the oxide scale. The formation of Nb2O5 destroyed the integrity of the oxide scale and led to the easy cracking of the oxide scale.

Key words:  high temperature corrosion      austenitic stainless steel      coal-ash/high sulfur flue-gas      sulfidation/oxidation     
Received:  08 December 2020     
ZTFLH:  TG174.44  
Fund: National Key Research and Development Program of China(2019YFF0217500);Excellent Youth Foundation of Liaoning Province(2019-YQ-03);Science and Technology Project of China Huaneng Group(HNKJ20-H43)
About author:  LU Jintao, senior engineer, Tel: 18192269998, E-mail: lujintao@tpri.com.cn
JIANG Chengyang, Tel: 18069221160, E-mail: jiangchengyang@mail.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00496     OR     https://www.ams.org.cn/EN/Y2022/V58/I1/67

Alloy Ni Cr Mn Nb Si N C B P Co Fe
Low Cr 19.41 19.13 0.40 6.23 1.19 0.13 0.13 0.002 0.018 4.74 Bal.
Medium Cr 20.31 22.78 0.61 1.04 1.20 0.19 0.092 0.002 0.03 1.02 Bal.
High Cr 19.20 24.00 0.45 1.41 0.58 0.18 0.10 0.002 0.02 2.30 Bal.
Table 1  Chemical compositions of three samples
Fig.1  Schematic of corrosion experiment setup in simulative coal ash/flue-gas environment
Fig.2  Mass change curves of the three test samples after corrosion at 700oC for 1000 h
Fig.3  XRD spectra of the three test samples after corrosion at 700oC for 1000 h
Fig.4  The surface morphologies and corresponding magnified images (insets) of the three test samples after corrosion at 700oC for 1000 h
(a) low Cr alloy
(b) medium Cr alloy
(c) high Cr alloy
Fig.5  The cross-sectional morphologies of the three test samples after corrosion at 700oC for 1000 h
(a) low Cr alloy (b) medium Cr alloy (c) high Cr alloy
Fig.6  Back-scattered electron image (BEI) and elemental mapping for low Cr alloy after corrosion at 700oC for 1000 h
Fig.7  BEI and elemental mapping for medium Cr alloy after corrosion at 700oC for 1000 h
Fig.8  BEI and elemental mapping for high Cr alloy after corrosion at 700oC for 1000 h
1 Lin F S , Wang Z Z , Wang B Z , et al . Research, application and development of domestic heat-resistant steels and alloys for power plants [J]. J. Chin. Soc. Power Eng., 2010, 30: 235
林富生, 王治政, 王宝忠 等 . 中国电站用耐热钢及合金的研制、应用与发展 [J]. 动力工程学报, 2010, 30: 235
2 Viswanathan R , Coleman K , Rao U . Materials for ultra-supercritical coal-fired power plant boilers [J]. Int. J. Press. Vessels Pip., 2006, 83: 778
3 Xu J , Zhou Y G . The development of 700oC USC technology [J]. Sino-Glob. Energy, 2012, 17(6): 13
徐 炯, 周一工 . 700℃高效超超临界技术的发展 [J]. 中外能源, 2012, 17(6): 13
4 Huang L Q , Liu G M , Zhang M Q , et al . Corrosion behavior of Super304H and HR3C austenitic steels in simulated flue-gas boiler environments with high sulfur concentration [J]. Trans. Mater. Heat Treat., 2017, 38(9): 155
黄丽琴, 刘光明, 张民强 等 . Super304H和HR3C奥氏体钢在模拟锅炉高硫气氛中的腐蚀行为 [J]. 材料热处理学报, 2017, 38(9): 155
5 Liu G M , Yang H C , Liang Q , et al . Corrosion behavior of the Ni-Cr-Fe base superalloy GH984G in a synthetic coal ash and flue gas environment [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 863
6 Lu J T , Yang Z , Li Y , et al . Fireside corrosion behaviors of Super304H and HR3C in coal ash/gas environment with different SO2 contents at 650oC [J]. J. Mater. Eng. Perform., 2018, 27: 2855
7 Yu C , Zhang J Q , Young D J . Corrosion behaviour of Fe-C-(Mn, Si) ferritic alloys in wet and dry CO2-SO2 atmospheres at 650oC [J]. Oxid. Met., 2018, 90: 97
8 Wright I G , Shingledecker J P . Rates of fireside corrosion of superheater and reheater tubes: Making sense of available data [J]. Mater. High Temp., 2015, 32: 426
9 Natesan K , Park J H . Fireside and steamside corrosion of alloys for USC plants [J]. Int. J. Hydrogen Energy, 2007, 32: 3689
10 Becker S , Schütze M , Rahmel A . Cyclic-oxidation behavior of TiAl and of TiAl alloys [J]. Oxid. Met., 1993, 39: 93
11 Lin J P , Zhao L L , Li G Y , et al . Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
12 Jiang H R , Hirohasi M , Lu Y , et al . Effect of Nb on the high temperature oxidation of Ti-(0-50 at.%)Al [J]. Scr. Mater., 2002, 46: 639
13 Brady M P , Wright I G , Gleeson B . Alloy design strategies for promoting protective oxide-scale formation [J]. JOM, 2000, 52(1): 16
14 Brady M P , Yamamoto Y , Santella M L , et al . Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels [J]. Scr. Mater., 2007, 57: 1117
15 Haanappel V A C , Sunderkötter J D , Stroosnijder M F . The isothermal and cyclic high temperature oxidation behaviour of Ti-48Al-2Mn-2Nb compared with Ti-48Al-2Cr-2Nb and Ti-48Al-2Cr [J]. Intermetallics, 1999, 7: 529
16 Zhu Y C , Zhang Y , Li X Y , et al . The effect of niobium-ion implantation on the oxidation behavior of γ-TiAl alloys in static and flowing air [J]. Oxid. Met., 2001, 55: 119
17 Hong J E . Experimental study of high temperature corrosion behavior of T91 in SO2 gas mixture [J]. East China Elec. Power, 2005, 33(1): 65
洪景娥 . T91钢在含SO2混合气体中高温腐蚀行为试验研究 [J]. 华东电力, 2005, 33(1): 65
18 Hussain T , Simms N J , Nicholls J R , et al . Fireside corrosion degradation of HVOF thermal sprayed FeCrAl coating at 700-800oC [J]. Surf. Coat. Technol., 2015, 268: 165
19 Zeng Z , Natesan K , Cai Z , et al . Effect of coal ash on the performance of alloys in simulated oxy-fuel environments [J]. Fuel, 2014, 117: 133
20 Viswanathan R , Henry J F , Tanzosh J , et al . U.S. program on materials technology for ultra-supercritical coal power plants [J]. J. Mater. Eng. Perform., 2005, 14: 281
21 Wagner C, Reaktionstypen bei der oxydation von legierungen [J]. Phys. Chem., 1959, 63: 772
22 Rapp R A, The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta. Metall., 1961, 9: 730
23 Trindade V , Christ H J , Krupp U . Grain-size effects on the high-temperature oxidation behaviour of chromium steels [J]. Oxid. Met., 2010, 73: 551
24 Yang S S , Yang L L , Chen M H , et al . Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
25 Wagner C . Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
26 Li T F . High Temperature Oxidation and Thermal Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 206
李铁藩 . 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 206
27 Banu A , Marcu M , Petrescu S , et al . Effect of niobium alloying level on the oxidation behavior of titanium aluminides at 850oC [J]. Int. J. Miner. Metall. Mater., 2016, 23: 1452
28 Zhang L B , Wang K Z , Xu L J , et al . Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti-Mo alloys [J]. Trans. Nonferr. Metal. Soc. China, 2015, 25: 2214
29 Fabas A , Put A R V , Doublet S , et al . Metal dusting corrosion of austenitic alloys at low and high pressure with the effects of Cr, Al, Nb and Cu [J]. Corros. Sci., 2017, 123: 310
30 Fang F , Lan M F , Lu X , et al . The impact of niobium on the microstructure, texture and magnetic properties of strip-cast grain oriented silicon steel [J]. J. Magn. Magn. Mater., 2017, 442: 1
31 Kobayashi T , Koizumi Y , Harada Y , et al . Influence of alloying elements on the creep strength of a 5th generation single crystal superalloy TMS-173 [J]. J. Jpn. Inst. Met. Mater., 2005, 69: 241
32 Xu Y X , Yan J B , Sun F , et al . Effect of further alloying elements on corrosion resistance of Ni-Cr alloys in molten glass [J]. Corros. Sci., 2016, 112: 647
33 Seo H S , Yun D W , Kim K Y . Oxidation behavior of ferritic stainless steel containing Nb, Nb-Si and Nb-Ti for SOFC interconnect [J]. Int. J. Hydrogen Energy, 2013, 38: 2432
34 Xia D X . Application of Nb in the modern ferritic stainless steel [J]. Shandong Sci., 2019, 32(1): 57
夏佃秀 . Nb在现代铁素体不锈钢中的应用研究进展 [J]. 山东科学, 2019, 32(1): 57
35 DeArdo A J . Latest development of IF steel and ferritic stainless steel in North America [A]. Beijing: China Iron and Steel Research Institute, 1999: 109
DeArdo A J . 北美IF钢和铁素体不锈钢的最新进展 [A]. 铌钢和铌合金——中国-巴西学术研讨会会议论文集 [C]. 北京: 中国钢铁研究总院, 1999: 109
36 Li X , Liu H L , Bi H Y , et al . Oxidation behavior of 18CrNb ferritic stainless steel at elevated temperatures [J]. Chin. J. Mater. Res., 2016, 30: 263
李 鑫, 刘后龙, 毕洪运 等 . 中铬铁素体不锈钢18CrNb高温氧化行为 [J]. 材料研究学报, 2016, 30: 263
37 Xu Y X , Gu Y F , Yan J B , et al . Oxidation behavior of Ni-based alloys: Effect of alloying additions [J]. Corrosion, 2017, 73: 247
38 Li M S , Zhang Y M . A review on effect of reactive elements on oxidation of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 333
李美栓, 张亚明 . 活性元素对合金高温氧化的作用机制 [J]. 腐蚀科学与防护技术, 2001, 13: 333
39 Xu Y X , Lu J T , Yang X W , et al . Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000oC [J]. Corros. Sci., 2017, 127: 10
40 Barin I , translated by Cheng N L , Niu S T , Xu G Y , et al . Thermochemical Data of Pure Substances [M]. Beijing: Science Press, 2003: 563
Barin I著, 程乃良, 牛四通, 徐桂英等译. 纯物质热化学数据手册 [M]. 北京: 科学出版社, 2003: 563
[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[6] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[7] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[8] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[9] BAO Feiyang, LI Yanfen, WANG Guangquan, ZHANG Jiarong, YAN Wei, SHI Quanqiang, SHAN Yiyin, YANG Ke, XU Bin, SONG Danrong, YAN Mingyu, WEI Xuedong. Corrosion Behaviors and Mechanisms of ODS Steel Exposed to Static Pb-Bi Eutectic at 600 and 700 ℃[J]. 金属学报, 2020, 56(10): 1366-1376.
[10] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[11] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[12] Sihan CHEN,Tian LIANG,Long ZHANG,Yingche MA,Zhengjun LIU,Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. 金属学报, 2017, 53(4): 397-405.
[13] Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 945-955.
[14] Dongsong RONG,Yong JIANG,Jianming GONG. EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1516-1522.
[15] Yawei PENG,Jianming GONG,Dongsong RONG,Yong JIANG,Minghui FU,Guo YU. NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1500-1506.
No Suggested Reading articles found!