Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (10): 1272-1280    DOI: 10.11900/0412.1961.2020.00402
Research paper Current Issue | Archive | Adv Search |
Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment
LUAN Xiaosheng1, LIANG Zhiqiang2(), ZHAO Wenxiang2, SHI Guihong1, LI Hongwei3, LIU Xinli3, ZHU Guorong3, WANG Xibin2
1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2.Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing 100081, China
3.Beijing North Vehicle Group Corporation, Beijing 100072, China
Cite this article: 

LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment. Acta Metall Sin, 2021, 57(10): 1272-1280.

Download:  HTML  PDF(2023KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Understanding the mechanism of the effects of magnetization treatment on the mechanical properties of materials for applications in magnetic field-assisted machining and magnetic treatment strengthening is of great significance. Pearlite and tempered martensite 45CrNiMoVA steels were magnetized by a pulsed magnetic field. Nanoindentation experiments were conducted to examine the effects of a pulsed magnetic field on the residual stress, hardness, and elastic modulus. The effect of pulsed magnetic treatment on the microstructure of the magnetic domain was analyzed by measuring the hysteresis loop and via magnetic microscopy. A magnetic pulse treatment could increase the residual compressive stress on the sample surface. The hardness of pearlite and tempered martensite 45CrNiMoVA steel was increased by 1.85% and 1.84%, respectively, after the magnetic pulse treatment. The magnetic pulse treatment had an insignificant effect on the elastic modulus of pearlite 45CrNiMoVA steel but had a considerable effect on tempered martensite 45CrNiMoVA steel. After the magnetic pulse treatment, the elastic modulus of the tempered martensite 45CrNiMoVA steel increased by 4.48%. In the magnetization process, the stress and strain of the micro-region material caused by the movement of the magnetic domains was the main mechanism responsible for strengthening the mechanical properties of 45CrNiMoVA steel.

Key words:  45CrNiMoVA steel      pulsed magnetic field      magnetic domain motion      strengthening mechanism     
Received:  10 October 2020     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2019YFB1311100);National Natural Science Foundation of China(51975053);Basic Research Program(DEDPHF、DEDPZF、DEDPYDJ)
About author:  LIANG Zhiqiang, associate professor, Tel: (010)68911717, E-mail: liangzhiqiang@bit.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00402     OR     https://www.ams.org.cn/EN/Y2021/V57/I10/1272

Fig.1  The microstructures of 45CrNiMoVA steel under different heat treatment conditions
Fig.2  Structure diagram of pulse magnetization processing equipment
Specimen labelMicrostructure of specimenMagnetization state
1PearliteMagnetization
2Unmagnetized
3Tempered martensiteMagnetization
4Unmagnetized
Table 1  Experimental scheme of pulse magnetization treatment for 45CrNiMoVA steel
Fig.3  Typical nanoindentation load-displacement curve (a) and important parameters (b) (h—displacement, P—loading, Pmax—maximum load, hmax?—maximum displacement, hf—residual displacement after unloading, hs—deviation height of contact perimeter, hc—maximum contact depth)
Fig.4  Nanoindentation curves of magnetized and unmagnetized 45CrNiMoVA steels
Fig.5  The influence of residual stress (σR) on the load displacement curve of nano-indentation (Pi is the indentation load under different stress states)
Fig.6  The surface residual stress changes of magnetized and unmagnetized 45CrNiMoVA steels
MicrostructureMagnetization stateS

hs

nm

hc

nm

hmax

nm

Ac

nm2

Pmax

mN

Pres

mN

σR

MPa

PUnmagnetized1.73122.541909.312031.8589317820293.215.5662.2
Magnetization1.71125.831889.342015.1787458085298.77
TMUnmagnetized1.71262.411994.111731.7073476586622.514.2557.8
Magnetization1.76256.161978.271722.1072660224626.76
Table 2  Calculation results of residual stress based on nanoindentation curves
Fig.7  Changes of hardness of magnetized and unmagnetized 45CrNiMoVA steels
Fig.8  Changes of elastic modulus of magnetized and unmagnetized 45CrNiMoVA steels
Fig.9  Magnetic properties and analysis of 45CrNiMoVA steel
Fig.10  Changes of magnetic domain structures and morphologies of 45CrNiMoVA steel
1 Jiang F, Yan L, Huang Y, et al. Review on magnetic field assisted machining technology [J]. J. Mech. Eng., 2016, 52(17): 1
姜 峰, 言 兰, 黄 阳等. 磁场辅助加工的研究现状及其发展趋势 [J]. 机械工程学报, 2016, 52(17): 1
2 Ye H S, Du X. Research on key technology of titanium alloy ultra-recision cutting based on magnetic field assistance [J]. J. Mech. Eng., 2020, 56(9): 222
叶惠思, 杜 雪. 基于磁场辅助的钛合金超精密切削关键技术研究 [J]. 机械工程学报, 2020, 56(9): 222
3 Azhiri R B, Jadidi A, Teimouri R. Electrical discharge turning by assistance of external magnetic field, part II: Study of surface integrity [J]. Int. J. Lightweight Mater. Manuf., 2020, 3: 305
4 El Mansori M, Iordache V, Seitier P, et al. Improving surface wearing of tools by magnetization when cutting dry [J]. Surf. Coat. Technol., 2004, 188-189: 566
5 Dehghani A, Amnieh S K, Tehrani A F, et al. Effects of magnetic assistance on improving tool wear resistance and cutting mechanisms during steel turning [J]. Wear, 2017, 384-385: 1
6 Muju M K, Ghosh A. Effect of a magnetic field on the diffusive wear of cutting tools [J]. Wear, 1980, 58: 137
7 Miller P C. Look at magnetic treatment of tools and wear surfaces [J]. Tooling Prod., 1990, 55: 100
8 Nikiforov Y P, Krasichkov A A, Lobachkov E A. Unit for magnetic hardening of cutting and forming tools [J]. Sov. Eng. Res., 1989, 9: 116
9 Çelik A, Yetim A F, Alsaran A, et al. Effect of magnetic treatment on fatigue life of AISI 4140 steel [J]. Mater. Des., 2005, 26: 700
10 Kida K, Santos E C, Uryu M, et al. Changes in magnetic field intensities around fatigue crack tips of medium carbon low alloy steel (S45C, JIS) [J]. Int. J. Fatigue, 2013, 56: 33
11 Fahmy Y, Hare T, Tooke R, et al. Effects of a pulsed magnetic treatment on the fatigue of low carbon steel [J]. Scr. Mater., 1998, 38: 1355
12 Shao Q, Wang G, Wang H D, et al. Improvement in uniformity of alloy steel by pulsed magnetic field treatment [J]. Mater. Sci. Eng., 2021, A799: 140143
13 Xu Q D, Li K J, Cai Z P, et al. Effect of pulsed magnetic field on the microstructure of TC4 Titanium alloy and its mechanism [J]. Acta Metall. Sin., 2019, 55: 489
许擎栋, 李克俭, 蔡志鹏等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究 [J]. 金属学报, 2019, 55: 489
14 Li G R, Wang F F, Zheng R, et al. Microstructural evolution and strengthening mechanism of al alloy matrix composites by applied high pulsed electromagnetic field [J]. Chin. J. Mater. Res., 2016, 30: 745
李桂荣, 王芳芳, 郑 瑞等. 脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制 [J]. 材料研究学报, 2016, 30: 745
15 Cai Z P, Lin J. Study on the relation of magnatostriction and residual stress relief in the process of magnetic treatment [J]. J. Mech. Eng., 2010, 46(22): 36
蔡志鹏, 林 健. 磁处理过程中磁致伸缩与残余应力关系的研究 [J]. 机械工程学报, 2010, 46(22): 36
16 Luo C, Li Z L, Cao H Z, et al. Influence mechanism of residual tensile stress in SKD11 steel caused by pulse magnetic field treatment [J]. China Mech. Eng., 2016, 27: 1535
罗 丞, 李正龙, 曹洪志等. 脉冲磁场处理对SKD11模具钢残余拉应力的影响机理分析 [J]. 中国机械工程, 2016, 27: 1535
17 Chen F T, Zhang Y X, Lu X C, et al. Determination of dynamic fracture toughness of 45CrNiMoVA steel [J]. Ordn. Mater. Sci. Eng., 1990, (1): 38
陈福泰, 张永信, 吕晓春等. 45CrNiMoVA钢动态断裂韧度的测定 [J]. 兵器材料科学与工程, 1990, (1): 38
18 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: A dvances in understanding and refinements to methodology [J]. J. Mater. Res., 2004, 19: 3
19 Dong M L, Jin G, Wang H D, et al. The research status of nanoindetation methods for measuring residual stresses [J]. Mater. Rev., 2014, 28(3): 107
董美伶, 金 国, 王海斗等. 纳米压痕法测量残余应力的研究现状 [J]. 材料导报, 2014, 28(3): 107
20 Lee Y H, Kwon D. Residual stresses in DLC/Si and Au/Si systems: application of a stress-relaxation model to the nanoindentation technique [J]. J. Mater. Res., 2002, 17: 901
21 Suresh S, Giannakopoulos A E. A new method for estimating residual stresses by instrumented sharp indentation [J]. Acta Mater., 1998, 46: 5755
22 Miao X, Qian D S, Song Y L. Influence rule of steel GCr15 in process of cold ring rolling-quenching by magnetic treatment [J]. J. Mech. Eng., 2014, 50(16): 112
缪 霞, 钱东升, 宋燕利. 磁处理对GCr15轴承环冷轧-淬火残余应力影响规律 [J]. 机械工程学报, 2014, 50(16): 112
23 Lin J, Zhao H Y, Cai Z P, et al. Study on the relationship between magneto-vibration and residual stress in steel materials [J]. Acta Metall. Sin., 2008, 44: 451
林 健, 赵海燕, 蔡志鹏等. 钢铁材料中残余应力与磁致振动的相互作用关系 [J]. 金属学报, 2008, 44: 451
24 Sun E X, Yang D Z, Xu Z Y, et al. Pulsed magnetic field-induced martensitic transformation in an Fe-21Ni-4Mn alloy [J]. Acta Metall. Sin., 1990, 26: A242
孙恩喜, 杨大智, 徐祖耀等. F6-21Ni-4Mn合金强脉冲磁场诱发马氏体相变的研究 [J]. 金属学报, 1990, 26: A242
25 Choi J K, Ohtsuka H, Xu Y, et al. Effects of a strong magnetic field on the phase stability of plain carbon steels [J]. Scr. Mater., 2000, 43: 221
26 Ma L P, Liang Z Q, Wang X B, et al. Influence of pulsed magnetic treatment on microstructures and mechanical properties of M42 high speed steel tool [J]. Acta Metall. Sin., 2015, 51: 307
马利平, 梁志强, 王西彬等. 脉冲磁化处理对M42高速钢刀具组织和力学性能的影响 [J]. 金属学报, 2015, 51: 307
27 Veligatla M, Garcia-Cervera C J, Müllner P. Magnetic domain-twin boundary interactions in Ni-Mn-Ga [J]. Acta Mater., 2020, 193: 221
28 Ma L P, Zhao W X, Liang Z Q, et al. An investigation on the mechanical property changing mechanism of high speed steel by pulsed magnetic treatment [J]. Mater. Sci. Eng., 2014, A609: 16
29 Ferreira P J, Sande J B V. Magnetic field effects on twin dislocations [J]. Scr. Mater., 1999, 41: 117
30 Wu G H, Hou T P, Wu K M, et al. Influence of high magnetic field on carbides and the dislocation density during tempering of high Chromium-containing steel [J]. J. Magn. Magn. Mater., 2019, 479: 43
31 Varga Z, Filipcsei G, Zrínyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus [J]. Polymer, 2006, 47: 227
32 Zheng T X, Shi P J, Shen Z, et al. Diffusion-controlled mechanical property-enhancement of Al-20wt.%Si ribbon annealed under high static magnetic fields, from the microscale to the atomic scale [J]. Mater. Des., 2020, 188: 108476
33 Datta S, Atulasimha J, Mudivarthi C, et al. Stress and magnetic field-dependent Young's modulus in single crystal iron-gallium alloys [J]. J. Magn. Magn. Mater., 2010, 322: 2135
34 Qiu F S. Research on magnetic domain wall dynamic behaviors for stress characterization [D]. Chengdu: University of Electronic Science and Technology of China, 2019
邱发生. 基于磁畴动态行为特征的应力表征研究 [D]. 成都: 电子科技大学, 2019
35 Zhong W D. Ferromagnetism [M]. 2nd Ed., Beijing: Science Press, 2017: 31
钟文定. 铁磁学: 下册 [M]. 第2版, 北京: 科学出版社, 2017: 31
[1] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[2] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[4] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[5] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[6] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[7] XU Shuai, SUN Xinjun, LIANG Xiaokai, LIU Jun, YONG Qilong. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel[J]. 金属学报, 2020, 56(12): 1581-1591.
[8] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[9] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[10] Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. 金属学报, 2017, 53(8): 937-946.
[11] Kechang HAN,Yiqi LIU,Guoqiang LIN,Chuang DONG,Kaiping TAI,Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES[J]. 金属学报, 2016, 52(12): 1601-1609.
[12] Yuefei TENG,Yingju LI,Xiaohui FENG,Yuansheng YANG. EFFECT OF RECTANGLE ASPECT RATIO ON GRAIN REFINEMENT OF SUPERALLOY K4169 UNDER PULSED MAGNETIC FIELD[J]. 金属学报, 2015, 51(7): 844-852.
[13] Yajun HUI,Hui PAN,Na ZHOU,Ruiheng LI,Wenyuan LI,Kun LIU. STUDY ON STRENGTHENING MECHANISM OF 650 MPa GRADE V-N MICROALLOYED AUTOMOBILE BEAM STEEL[J]. 金属学报, 2015, 51(12): 1481-1488.
[14] HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS[J]. 金属学报, 2014, 50(2): 137-140.
[15] LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao. EFFECT OF THE THERMO-MECHANICAL TREATMENT OF PRE-AGEING, COLD-ROLLING AND RE-AGEING ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 6061 Al ALLOY[J]. 金属学报, 2014, 50(10): 1244-1252.
No Suggested Reading articles found!