Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (10): 1229-1245    DOI: 10.11900/0412.1961.2021.00046
Overview Current Issue | Archive | Adv Search |
Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control
TANG Haiyan1(), LIU Jinwen1, WANG Kaimin1, XIAO Hong1,2, LI Aiwu2, ZHANG Jiaquan1
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Electromagnetic Center, Hunan Zhongke Electric Co. , Ltd. , Yueyang 414000, China
Cite this article: 

TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control. Acta Metall Sin, 2021, 57(10): 1229-1245.

Download:  HTML  PDF(1837KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The continuous casting tundish is one of the key metallurgical reactors for the sequence casting process of liquid steel, which is a recent novel technology equipped with heating and temperature control units to produce improved quality casting strands and their hot rolling products. To maintain a stable casting temperature for sequence production under given superheating and casting speeds, a tundish technology equipped with heating and temperature control units is required. Aiming at addressing some issues in the application of two typical heating technologies, plasma and channel induction, in tundishes for special steel production, we investigated the heating principles and features of instrumentation. The challenges in the development and applications of plasma heating and discussed the details of the channel induction heating technique adopted in the industry were reviewed. The heating coil designs, arrangements, and the effects on the fluid flow, temperature, and magnetic fields in tundishes were also analyzed, paying special attention to inclusion removal. Finally, our recent study and applications regarding this issue are presented with special attention to the understanding, new findings, and suggestions for the novel tundish technology for its applications and further improved steel quality.

Key words:  continuous casting tundish      plasma heating      induction heating      electromagnetic field      flow      heat transfer      inclusion removal     
Received:  25 January 2021     
ZTFLH:  TF341  
Fund: National Natural Science Foundation of China(51874033);National Key Research and Development Program of China(016YEB0601302);Natural Science Foundation of Beijing(218-2038)
About author:  TANG Haiyan, professor, Tel: (010)62332880, E-mail: tanghaiyan@metall.ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00046     OR     https://www.ams.org.cn/EN/Y2021/V57/I10/1229

TechnologyAdvantageDisadvantage
Channel induction heatingHomogeneity;Larger size and occupation;
quick heating;tundish geometry dependent;
high heating efficiency up to 90%;cost for maintenance;
easy instrumentation;quality demand for refractory;
safe in service;special design for cooling and insulation of
easy maintenance;the heating coils
fine metallurgical effect
Plasma heatingQuick action for heating;Arcing and inert gas required;
good adaptability;larger temperature fluctuation locally;
less consumption for refractory;possibly arc extinction in service;
easy operation and maintenance;noise while in operation;
less occupation in sizesignal interference;
high local temperature for steel and refractory;
secondary oxidation;
lower heating efficiency about 60%
Table 1  Advantages and disadvantages of channel induction heating and plasma heating tundishes[4,5,15-21]
Fig.1  Schematic of plasma heating device[22]
Fig.2  Schematic of channel-type induction heating in tundish[53]
Fig.3  Schematic of heating channel location in a 7-strand tundish[53]
Fig.4  Non-isothermal flow fields of tundish at different moments with 5℃ of temperature difference between inside and outside the channel[53]
Fig.5  Isothermal flow fields of tundish at different moments with 0℃ of temperature difference between inside and outside channel[53]
Fig.6  Paths of different sizes of inclusions in tundish[53]
Fig.7  Induced magnetic field (B) distribution in an H-type 6-strand dual-channel induction tundish[93]
Fig.8  Residence time distribution E(θ) curves in tundish from water modelling (θ—dimensionless time)[94](a) split channel(b) straight channel
1 Dong H. Year 2020: 200th anniversary for alloy steel——Preword of special issue for alloy steel [J]. Acta Metall. Sin., 2020, 56: 381
董 瀚. 2020年: 合金钢200周年——“合金钢专刊”前言 [J]. 金属学报, 2020, 56: 381
2 Wang R H. Application of tundish plasma heating technology in alloy steel continuous casting [J]. Jiangsu Metall., 1997, (6): 39
王日红. 中间包等离子加热技术在合金钢连铸中的应用 [J]. 江苏冶金, 1997, (6): 39
3 Mao B, Tao J M, Jiang T X. Tundish heating technology for continuous casting[A]. Proceedings of 2008 Continuous Casting Equipment Technical Exchange Conference [C]. Xiangtan: Continuous Casting Branch of The Chinese Society for Metals, 2008: 68
毛 斌, 陶金明, 蒋桃仙. 连铸中间罐加热技术 [A]. 2008年连铸设备技术交流会论文集 [C]. 湘潭: 中国金属学会连铸分会, 2008: 68
4 Mao B, Tao J M, Jiang T X. Tundish channel type induction heating technology for continuous casting [J]. Contin. Cast., 2008, (5): 4
毛 斌, 陶金明, 蒋桃仙. 连铸中间包通道式感应加热技术 [J]. 连铸, 2008, (5): 4
5 Sun H B, Yan B, Zhang J Q. Current situation of design and application for channel induction heater in continuous casting tundish [J]. Shanghai Met., 2012, 34(1): 43
孙海波, 闫 博, 张家泉. 连铸中间包通道式感应加热设备设计与应用现状 [J]. 上海金属, 2012, 34(1): 43
6 Zhi J J. Measuring and analysis to the heat status of a continuous casting tundish in Baosteel [J]. Shanghai Met., 2001, 23(4): 38
职建军. 宝钢连铸中间包热状态测试与分析 [J]. 上海金属, 2001, 23(4): 38
7 Pan X F. Numerical simulation of non-steady fluid flow and heat transfer in continuous casting tundish during series casting [J]. China Metall., 2010, 20(6): 8
潘学峰. 中间包连浇过程非稳态流场与温度场的数值模拟研究 [J]. 中国冶金, 2010, 20(6): 8
8 Lei H, Lei S T, Zhuang B X. A new tundish heating equipment of horizontal continuous casting machine [J]. Iron Steel, 2008, 43(4):43
雷 惠, 雷森田, 庄斌星. 一种新型的水平连铸机中间包加热系统 [J]. 钢铁, 2008, 43(4): 43
9 Jiang Z H, Li C J, Jiang Y L, et al. Laboratory research on electro slag heating of molten steel in ladle [J]. Iron Steel, 1995, 30(3): 12
姜周华, 李晨隽, 姜永林等. 钢水炉外电渣加热的实验研究 [J]. 钢铁, 1995, 30(3): 12
10 Zuo X J, Yan J W, Luo L H, et al. Application of plasma tundish heating technology in continuous casting process [J]. Iron Steel Technol., 2016, (1): 10
佐祥均, 阎建武, 罗利华等. 等离子中间罐加热技术在连铸过程中的应用 [J]. 钢铁技术, 2016, (1): 10
11 Moore C. Plasma tundish heating as an integral part [J]. Steel Times Int., 1989, 13: 44
12 Xiang S H, Liu Y S, Gao Z L. Heating of molten steel in continuous casting tundish [J]. Indus. Heat., 1993, (6): 8
向顺华, 刘应书, 高仲龙. 连铸中间包中钢水的加热 [J]. 工业加热, 1993, (6): 8
13 Ueda T, Ohara A, Sakurai M, et al. A tundish provided with a heating device for molten steel [P]. EU Pat, 0119853, 1984
14 Zhang D J, Li K H. Tundish molten steel heating device [J]. Res. Iron Steel., 1984, (1): 69
张定基, 李克厚. 中间包钢水加热装置 [J]. 钢铁研究, 1984, (1): 69
15 Jin H. Electromagnetic induction heating technology and application [J]. Contin. Cast., 2019, 44(2): 62
金 辉. 电磁感应加热技术与应用 [J]. 连铸, 2019, 44(2): 62
16 Tian J Y, Zhang X L, Li J S, et al. Review of plasma heating technology for continuous casting tundish [J]. Wide Heavy Plate, 2017, 23(2): 45
田建英, 张雪良, 李京社等. 连铸中间包等离子加热技术综述 [J]. 宽厚板, 2017, 23(2): 45
17 Li R S, Li Y H, Zhou D G, et al. Problem and discuss of plasma tundish heating in China [J]. Iron Steel, 1999, 34(1): 70
李润生, 李延辉, 周大刚等. 中间包钢水等离子加热技术在我国应用中的问题与探讨 [J]. 钢铁, 1999, 34(1): 70
18 Zhong Y T, Pan H Y, Abiona E, et al. Application and development of composite technology of plasma heating and electromagnetic stirring in tundish [J]. Contin. Cast., 2016, 41(6): 37
钟云涛, 潘汉玉, Abiona E等. 中间包等离子加热和电磁搅拌复合技术的开发与使用 [J]. 连铸, 2016, 41(6): 37
19 Mao B, Li A W, Ma Z M, et al. The research & development and application of tundish splayed channel induction heating and refining technology for continuous casting [J]. Steelmaking, 2015, 31(1): 1
毛 斌, 李爱武, 马志民等. 连铸中间包八字型通道感应加热与精炼技术的研发及应用 [J]. 炼钢, 2015, 31(1): 1
20 Chen K Y, Chang L Z, Wang J J. The present situation and development trend of continuous casting technologies [J]. Wide Heavy Plate, 2015, 21(5): 38
陈开义, 常立忠, 王建军. 连铸技术的发展现状与趋势 [J]. 宽厚板, 2015, 21(5): 38
21 Wang Q, He M, Zhu X W, et al. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes [J]. Acta Metall. Sin., 2018, 54: 228
王 强, 何 明, 朱晓伟等. 电磁场技术在冶金领域应用的数值模拟研究进展 [J]. 金属学报, 2018, 54: 228
22 Jiang J, Lu H B, Li Q Y, et al. Application of tundish plasma heater [J]. Contin. Cast., 2018, 43(2): 7
蒋 军, 路海波, 李勤勇等. 中间罐等离子加热技术在青岛特钢的应用 [J]. 连铸, 2018, 43(2): 7
23 Pan X L, Wang Y H, Liang H Z, et al. Independent innovative continuous casting technology of Nippon Steel in Japan [J]. World Iron Steel, 2010, 10(2): 31
潘秀兰, 王艳红, 梁慧智等. 日本新日铁自主创新的连铸技术 [J]. 世界钢铁, 2010, 10(2): 31
24 Wang C, Pan G P, Yang C Z, et al. Experimental investigation on plasma tundish heating [J]. Iron Steel, 1997, 32(9): 21
王 存, 潘公平, 杨春政等. 中间包钢水等离子体加热试验研究 [J]. 钢铁, 1997, 32(9): 21
25 Xiao Z M, Cao W. Technical progress in the No.2 steelmaking plant of WISCO [J]. Steelmaking, 1996, (6): 51
肖忠敏, 曹 伟. 武钢第二炼钢厂的技术进步 [J]. 炼钢, 1996, (6): 51
26 Zhao C C, Jin X. Application of tundish plasma heating [A]. Proceedings of 2019 National Symposium on Efficient Continuous Casting Application Technology and Billet Quality Control [C]. Yangzhou: Hebei Province Society for Metals, 2019: 99
赵长春, 金 鑫. 中间包等离子加热应用 [A]. 2019全国高效连铸应用技术及铸坯质量控制研讨会论文集 [C]. 扬州: 河北省金属学会, 2019: 99
27 Wan S D, Wang H. Application of arc plasma metallurgy technology [J]. J. Mater. Metall., 2013, 12: 81
万树德, 汪 海. 电弧等离子体冶金技术的实际应用 [J]. 材料与冶金学报, 2013, 12: 81
28 Liu T, Zhao M J, Yang S F, et al. Industrial practice of tundish plasma heating [J]. China Metall., 2020, 30: 36
刘 涛, 赵梦静, 杨树峰等. 中间包等离子加热工业试验 [J]. 中国冶金, 2020, 30: 36
29 Isakaev E K, Tyuftyaev A S, Filippov G A, et al. Study of the microstructure and mechanical properties of steel cast using plasma heating in a CBCM tundish [J]. Metallurgist, 2013, 57: 427
30 Mao B, Ma Z M, Yao H Y, et al. Development and application of tundish splayed channel induction heating and refining technology for continuous casing [A]. Proceedings of 2014 High Quality Steel Continuous Casting Production Technology and Equipment Exchange Conference [C] Changsha: The Chinese Society for Metals, Continuous Casting, 2014: 61
毛 斌, 马志民, 姚海英等. 连铸中间包通道式感应加热与精炼技术的研发与应用 [A]. 2014年高品质钢连铸生产技术及装备交流会论文集 [C]. 长沙: 中国金属学会 连铸杂志, 2014: 61
31 Xie W X, Bao Y P, Wang M, et al. Application of induction heating liquid in a 30 t tundish in continuous casting production of special steels [J]. Spec. Steel, 2014, 35(6): 28
谢文新, 包燕平, 王 敏等. 特殊钢连铸生产中30 t中间包感应加热的应用 [J]. 特殊钢, 2014, 35(6): 28
32 Filippov G A, Tyuftyaev A S, Gadzhiev M K, et al. Effect of stabilizing steel temperature in a continuous-caster tundish by the plasma method on the uniformity of the mechanical properties of plates after rolling [J]. Metallurgist, 2016, 60: 267
33 Sha J, Qian H J, Zhu M Y. Study on distributions of fluid temperature in tundish with Plasma heating using water modeling [J]. Gold J., 2000, 2: 263
沙 骏, 钱洪俊, 朱苗勇. 等离子加热中间包流体温度分布水模研究 [J]. 黄金学报, 2000, 2: 263
34 Abiona E, Yang H L, Chaudhary R, et al. Development of plasma heating and electromagnetic stirring in tundish [A]. 8th International Conference on Electromagnetic Processing of Materials- EPM2015 [C]. Cannes: HAL, 2015: hal-01335865
35 Fan J F, Lu J X, Liu J J, et al. Numerical simulation of the plasma heating process in a six-strand tundish [J]. Acta Metall. Sin., 2001, 37: 429
樊俊飞, 卢金雄, 刘俊江等. 六流连铸中间包等离子加热过程的数值模拟 [J]. 金属学报, 2001, 37: 429
36 Fan J F, Liu J J, Lu J X, et al. Optimization of numerical simulation of the bottom blowing process in a plasma heated six-strand tundish [J]. Bao-Steel Technol., 2007, (5): 67
樊俊飞, 刘俊江, 卢金雄等. 等离子加热六流连铸中间包底吹气过程数值模拟优化研究 [J]. 宝钢技术, 2007, (5): 67
37 Barron-Meza M A, Barreto-Sandoval J de J, Morales R D. Physical and mathematical models of steel flow and heat transfer in a tundish heated by plasma [J]. Metall. Mater. Trans., 2000, 31B: 63
38 Wang Y, Zhao M J, Yang S F, et al. Physical simulation of tundish heated by plasma [J]. Chin. J. Eng., 2020, 42(S1): 68
王 勇, 赵梦静, 杨树峰等. 中间包等离子加热的物理模拟 [J]. 工程科学学报, 2020, 42(): 68
39 Neuschütz D, Zhai Y Y, Hauck A. Nitrogen transfer into plasma heated steel melts as a function of arc polarity [J]. Steel Res., 1994, 65: 219
40 Hu Z G, Zou H H, Wang W M, et al. Study of tundish powder for nitrogen plasma heating [J]. J. Iron Steel Res., 1997, 9(4): 13
胡志高, 邹海辉, 王文明等. 氮等离子体弧加热中间包用保护渣 [J]. 钢铁研究学报, 1997, 9(4): 13
41 Essiptchouk A M, Sharakhovsky L I, Marotta A. Peculiarity of current-voltage characteristics of transferred arc burning in a limited volume [J]. Plasma Devices Oper., 2009, 17: 23
42 Yamamoto Y, Iwai K, Asai S. Plasma behavior under imposition of alternating magnetic field perpendicular or parallel to the plasma arc current [J]. ISIJ Int., 2007, 47: 960
43 Neuschütz D, Stadler P, Bebber H J. Arc heating in the tundish with a graphite electrode in comparison to a metallic plasma torch [J]. Steel Res., 1996, 67: 475
44 Badie J M, Bertrand P, Flamant G. Temperature distribution in a pilot plasma tundish: Comparison between plasma torch and graphite electrode systems [J]. Plasma Chem. Plasma Process., 2001, 21: 279
45 Yoshii Y, Nozaki T, Habu Y, et, al. Decreasing Non-metallic inclusions in molten steel by use of tundish heating system in continuous casting [J]. Tetsu Hagané, 1985, 71: 1474
吉井裕, 野崎努, 垣生泰弘等. 連続鋳造におけるタンディッシュ内溶鋼加熱による非金属介在物の低減 [J]. 鉄と鋼, 1985, 71: 1474
46 Futagawa T, Kashiwa Y, Sato Y, et al. Development of molten steel heating device in tundish [J]. Tetsu Hagané, 1987, 73: S928
二川哲雄, 柏仓义光, 佐藤雄司等. タンディッシュ内溶鋼加熱装置の開発 [J]. 鉄と鋼, 1987, 73: S928
47 Yamaguchi R, Miyahara S, Ishikawa M, et al. Dynamic control characteristics of molten steel temperature in tundish [J]. Tetsu Hagané, 1987, 73: S931
山口隆二, 宮原忍, 石川胜等. 連鋳タンディッシュ内溶鋼温度の動的加熱制御特性 [J]. 鉄と鋼, 1987, 73: S931
48 Kollberg S, Sundberg Y. Heating apparatus for intermediate ladles or tundishes [P]. US Pat, 4735256, 1988
49 Zhao P, Wang X J, Wang L Y. Study on heating styles in continuous casting tundish by simulation of water model [J]. J. Univ. Sci. Technol. Beijing, 1994, 16(1): 6
赵 沛, 王新江, 王林英. 连铸中间包钢液加热方式的模拟 [J]. 北京科技大学学报, 1994, 16(1): 6
50 Mao B, Tao J M, Jiang T X. Butterfly shape duct core induction heater [P]. Chin Pat, 101234423, 2008
毛 斌, 陶金明, 蒋桃仙等. 蝶形通道有芯感应加热装置 [P]. 中国专利, 101234423, 2008)
51 Li A W, Mao B, Jiang H B, et al. Tundish bypass type double-channel electromagnetic refining and heating device [P]. Chin Pat, 201618847U, 2010
李爱武, 毛 斌, 蒋海波等. 一种中间罐旁通式双通道电磁精炼与加热装置 [P]. 中国专利, 201618847U, 2010)
52 Zhang J Q, Sun H B, Yan B, et al. Channel induction heating device of compact cross-shaped tundish [P]. Chin Pat, 102009143A, 2011
张家泉, 孙海波, 闫 博等. 一种紧凑式十字形中间包通道式感应加热装置 [P]. 中国专利, 102009143A, 2011)
53 Tang H Y, Guo L Z, Wu G H, et al. Hydrodynamic modeling and mathematical simulation on flow field and inclusion removal in a seven-strand continuous casting tundish with channel type induction heating [J]. Metals, 2018, 8: 374
54 Wei Q. The design of shape and lining masonry of channel type induction heating tundish [J]. Bao-Steel Technol., 2016, (2): 70
魏 琴. 通道式感应加热中间包的形状和内衬砌筑设计 [J]. 宝钢技术, 2016, (2): 70
55 Xing F, Zheng S G, Liu Z H, et al. Flow field, temperature field, and inclusion removal in a new induction heating tundish with bent channels [J]. Metals, 2019, 9: 561
56 Cong L, Zhang J M, Lei S W, et al. Numerical simulation on tundish induction heating [J]. Res. Iron Steel, 2014, 42(3): 20
丛 林, 张炯明, 雷少武等. 中间包感应加热的数值模拟 [J]. 钢铁研究, 2014, 42(3): 20
57 Li X S. A new type of induction heating tundish channel design and research on flow and heat transfer characteristics of molten steel [D]. Beijing: University of Science and Technology Beijing, 2020
(李小松,一种新型的感应加热中间包通道设计和钢液流动、传热特性研究 [D]. 北京: 北京科技大学, 2020)
58 An H H, Han C J, Tao J M, et al. Physical simulation of liquid flow field in 45 t tundish for four strand bloom and its metallurgical effect [J]. Spec. Steel, 2012, 33(2): 1
安航航, 韩传基, 陶金明等. 4流大方坯45 t中间包流场的物理模拟和冶金效果 [J]. 特殊钢, 2012, 33(2): 1
59 Dou W X, Yao H Y, Chang L S, et al. Physical simulation of flow field for channel induction heating tundish [J]. Contin. Cast., 2019, 44(3): 29
窦为学, 姚海英, 常立山等. 通道式感应加热中间包流场物理模拟研究 [J]. 连铸, 2019, 44(3): 29
60 Cai Y F, Sun Y H, Yang W Z, et al. Application of reducer in splayed channel type induction heating tundish [J]. Steelmaking, 2020, 36(2): 42
蔡亦凡, 孙彦辉, 杨文中等. 变径通道在八字型感应加热中间包中的应用 [J]. 炼钢, 2020, 36(2): 42
61 Joo S, Han J W, Guthrie R I L. Inclusion behavior and heat-transfer phenomena in steelmaking tundish operations: part II. Mathematical model for liquid steel in tundishes [J]. Metall. Mater. Trans., 1993, 24B: 767
62 Wu G H, Tang H Y, Xiao H, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating [J]. Iron Steel, 2017, 52(11): 20
吴光辉, 唐海燕, 肖 红等. 通道式感应加热7流中间包流场的物理模拟 [J]. 钢铁, 2017, 52(11): 20
63 Liu L C, Wang Q, Sun M J, et al. Numberical simulation tundish induction heating based on RTD curve [A]. The 8th National Conference on Energy and Thermal Engineering [C]. Dalian: Energy and Thermal Engineering Branch of The Chinese Metal Society, 2015: 457
刘立超, 王 强, 孙美佳等. 基于RTD曲线通道式感应加热中间包数值计算 [A]. 第八届全国能源与热工学术年会论文集 [C]. 大连: 中国金属学会能源与热工分会, 2015: 457
64 Yue Q, Zhang J, Lu J, et al. Numerical simulation of electromagnetic, flow and heat transfer for Tundish with channel induction heating [A]. Proceedings of the 10th CSM Congress and the 6th Baosteel Academic Conference [C]. Shanghai: The Chinese Society for Metals, 2015: 1482
岳 强, 张 炯, 陆 娟等. 通道式电磁感应加热中间包电磁场、流场和温度场耦合的数值模拟研究 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集III [C]. 上海: 中国金属学会, 2015: 1482
65 Yue Q, Zhang C B, Pei X H. Magnetohydrodynamic flows and heat transfer in a twin-channel induction heating tundish [J]. Ironmaking Steelmaking, 2017, 44: 227
66 Dai C M, Lei H, Bi Q, et al. Mathematical simulation for tundish with the channel type induction heating [J]. Steelmaking, 2015, 31(4): 54
代传民, 雷 洪, 毕 乾等. 通道式感应加热中间包的数值模拟 [J]. 炼钢, 2015, 31(4): 54
67 Wang Q, Wang F, Wang B, et al. Fluid flow and heat transfer in a continuous casting tundish with the channel type induction heating [J]. J. Iron Steel Res. Int., 2012, 19(S2): 969
68 Wang Q, Li B K, Tsukihashi F. Modeling of a thermo-electromagneto-hydrodynamic problem in continuous casting tundish with channel type induction heating [J]. ISIJ Int., 2014, 54: 311
69 Tang H Y, Li X S, Zhang S, et al. Fluid flow and heat transfer in a tundish with channel induction heating for sequence casting with a constant superheat control [J]. Acta Metall. Sin., 2020, 56: 1629
唐海燕, 李小松, 张 硕等. 基于恒过热控制的感应加热中间包内钢水的流动与传热 [J]. 金属学报, 2020, 56: 1629
70 Xing F, Zheng S G, Zhu M Y. Numerical simulation of effect of channel tilt angle on induction heating tundish [J]. Steelmaking, 2019, 35(3): 27
邢 飞, 郑淑国, 朱苗勇. 通道倾角对感应加热中间包影响的数值模拟 [J]. 炼钢, 2019, 35(3): 27
71 Xu T, Zhang L H, Li X Q, et al. Numerical simulation of fluid-thermal coupling field of tundish in static magnetic field [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 365
徐 婷, 张立华, 李晓谦等. 稳恒磁场下中间包温度场流场耦合数值模拟 [J]. 特种铸造及有色合金, 2015, 35: 365
72 Xing F, Zheng S G, Zhu M Y. Motion and removal of inclusions in new induction heating tundish [J]. Steel Res. Int., 2018, 89: 1700542
73 Xiao H, Xu H, He H, et al. Flow field optimization of five-stream induction heating tundish based on numerical simulation [J]. China Metall., 2021, 31(1): 14
肖 红, 徐 辉, 何 浩等. 基于数值模拟的五流感应加热中间包流场优化 [J]. 中国冶金, 2021, 31(1): 14
74 Xu J C, Jian H, Nie G S, et al. Application of induction heating technology on casting middle package [J]. Metall. Equipm., 2018, (6): 54
徐靖驰, 蹇 华, 聂高升等. 感应加热技术在连铸中间包上的应用 [J]. 冶金设备, 2018, (6): 54
75 Ma Y L, Liu J F, Xing S Q, et al. Numerical simulation of continuous casting tundish channel-type electromagnetic induction heating [J]. Contin. Cast., 2016, 41(6): 50
麻永林, 刘进飞, 邢淑清等. 连铸中间包通道式电磁感应加热数值模拟 [J]. 连铸, 2016, 41(6): 50
76 Yang B, Lei H, Bi Q, et al. Fluid flow and heat transfer in a tundish with channel type induction heating [J]. Steel Res. Int., 2018, 89: 1800173
77 Yang B, Deng A Y, Wang E G. Simulating the magnetic field/transfer phenomenon of the tundish with channel type inducting heating [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 424: 012060
78 Dou W X, Hu Z, Xia Z D, et al. Influence of electromagnetic field on molten steel flow and heat transfer in slab continuous casting tundish [J]. Steelmaking, 2019, 35(2): 39
窦为学, 胡 增, 夏振东等. 电磁场对板坯连铸中间包内钢液流动和传热的影响 [J]. 炼钢, 2019, 35(2): 39
79 Zhang S, Tang H Y, Liu J W, et al. Structural optimization of a six-strand H-type channel induction heating tundish [J]. J. Iron Steel Res., 2019, 31: 787
张 硕, 唐海燕, 刘锦文等. 六流H型通道感应加热中间包的结构优化 [J]. 钢铁研究学报, 2019, 31: 787
80 An H H, Han C J, Ji W, et al. Study on numerical simulation and physical simulation and metallurgical effect for structural optimization of four-strand tundish in bloom casting [A]. Proceedings of the 8th(2011) CSM Congress [C]. Beijing: The Chinese Society for Metals, 2011: 4114
安航航, 韩传基, 季 维等. 四流大方坯中间包结构优化的数理模拟及冶金效果的研究 [A]. 第八届(2011)中国钢铁年会论文集 [C]. 北京: 中国金属学会, 2011: 4114
81 Vives C, Ricou R. Magnetohydrodynamic flows in a channel-induction furnace [J]. Metall. Mater. Trans., 1991, 22B: 193
82 Yue Q, Pei X, Zhang C, et al. Magnetohydrodynamic calculation on double-loop channel induction tundish [J]. Arch. Metall. Mater., 2018, 63: 329
83 Yang B, Lei H, Bi Q, et al. Electromagnetic conditions in a tundish with channel type induction heating [J]. Steel Res. Int., 2018, 89: 1800145
84 Mabuchi M, Yoshii Y, Nozaki T, et al. Investigation of the purification of molten steel by using tundish heater: development on the controlling method of casting temperature in continuous casting V [J]. ISIJ Int., 1984, 70: 118
85 Miura R, Nisihara R, Tanaka H, et al. Tundish induction heater of No. 2 continuous caster at Yawata works [J]. Tetsu Hagané, 1995, 81: T30
三浦竜介, 西原良治, 田中宏幸等. 八幡No.2連鋳機におけるタンディッシュ誘導加熱装置の導入と操業 [J]. 鉄と鋼, 1995, 81: T30
86 Xiao H, Yao H Y, Ye F, et al. The application and key technology of tundish induction heating on the special steel continuous casting [J]. Contin. Cast., 2017, 42(3): 64
肖 红, 姚海英, 叶 枫等. 中间罐感应加热在特钢连铸上的应用及其关键技术 [J]. 连铸, 2017, 42(3): 64
87 Lei H, Yang B, Bi Q, et al. Numerical simulation of collision-coalescence and removal of inclusion in tundish with channel type induction heating [J]. ISIJ Int., 2019, 59: 1811
88 Wang Q, Qi F S, Li B K, et al. Behavior of non-metallic inclusions in a continuous casting tundish with channel type induction heating [J]. ISIJ Int., 2014, 54: 2796
89 Wang Q, Shi Y M, Li Y M, et al. Inclusions behavior and removal in tundish with induction heating [J]. J. Northeastern Univ. (Nat. Sci.), 2014, 35: 1442
王 强, 石月明, 李一明等. 感应加热中间包夹杂物的运动及去除 [J]. 东北大学学报(自然科学版), 2014, 35: 1442
90 Gao Z G. Simulation of liquid steel flow pattern and thermal field for induction heating tundish [D]. Chongqing: Chongqing University, 2017
高章光. 通道式感应加热中间包内钢液的流场及温度场模拟 [D]. 重庆: 重庆大学, 2017
91 Tang H Y, Yu M, Li J S, et al. Numerical and physical simulation on inner structure optimization of a continuous casting tundish and its metallurgical effect [J]. J. Univ. Sci. Technol. Beijing, 2009, 31(S1): 38
唐海燕, 于 满, 李京社等. 连铸中间包内部结构优化的数理模拟及冶金效果 [J]. 北京科技大学学报, 2009, 31(): 38
92 Ruan X J, Li J S, Wang J B, et al. Optimizing of tundish structure in Xingcheng Special Steel [J]. J. Univ. Sci. Technol. Beijing, 2007, 29(S1): 138
阮小江, 李京社, 王剑斌等. 兴澄特钢中间包结构优化 [J]. 北京科技大学学报, 2007, 29(S1): 138
93 Zhang S. Structural optimization of a six-strand H-type channel induction heating tundish [D]. Beijing: University of Science and Technology Beijing, 2019
张 硕. 六流H型通道感应加热中间包的结构优化研究 [D]. 北京: 北京科技大学, 2019
94 Ma Y, Tang H Y, Zhang S, et al. Water modelling on a five-strand tundish with channel induction heating for better flow field [J]. Iron steel, 2020, 55(11): 57
马 钰, 唐海燕, 张 硕等. 通道式感应加热五流中间包流场的水力学模拟 [J]. 钢铁, 2020, 55(11): 57
[1] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[2] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[3] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[4] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[5] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[6] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] ZHENG Jincan, LIU Runcong, WANG Xiaodong. Online Electromagnetic Measurement of Molten Zinc Surface Velocity in Hot Galvanized Process[J]. 金属学报, 2020, 56(7): 929-936.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[11] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[12] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[13] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[14] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[15] Ming HE, Xianliang LI, Qingwei WANG, Lianyu WANG, Qiang WANG. Influence of Magnetic Shielding on the Power Loss of Induction Heating Power Supply in the Electro-magnetic Induction Controlled Automated Steel Teeming System[J]. 金属学报, 2019, 55(2): 249-257.
No Suggested Reading articles found!