Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (2): 137-147    DOI: 10.11900/0412.1961.2019.00237
Current Issue | Archive | Adv Search |
Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions
CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan()
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Cite this article: 

CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions. Acta Metall Sin, 2020, 56(2): 137-147.

Download:  HTML  PDF(10336KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon steels are widely used as transportation pipelines in oil and gas fields and welding is one of the main ways of connecting pipeline steel. The welded joints are easily corroded due to the difference in composition, structure and properties of the various components. The effect of content of HAc, Cl-, ethylene glycol (MEG) and temperature (T) on the corrosion behavior of welded joint of X80 steel in a simulated natural gas condensate saturated with CO2 was studied by the orthogonal experimental design, weight loss experiment and electrochemical experiment. It is demonstrated that the corrosion rate of the welded joint is significantly higher than that of the base metal because of the formation of macroscopic corrosion galvanic cells, and the corrosion of the weld metal as an anode region is accelerated to become a weak link of the welded joint. The significance of the four factors on the corrosion process is: c(HAc)>T $\gg$c(Cl-)>c(MEG), c(HAc) and T are the main factors affecting the corrosion behavior, and c(Cl-) and c(MEG) are secondary factors. Base metal and weld metal corrosion tendencies increase with increasing temperature. Because ferrous acetate is less protective as a corrosion product, as the c(HAc) increases, the impedance of the base metal and weld metal decreases, and the corrosion rate increases. Based on the results of orthogonal experiments, a multivariate linear regression equation was established.

Key words:  X80 pipeline steel      welded joint      natural gas condensate      corrosion behavior     
Received:  24 July 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(41676071);Fundamental Research Funds for the Central Universities(18CX05021A)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00237     OR     https://www.ams.org.cn/EN/Y2020/V56/I2/137

Fig.1  Microstructures of X80 welded joint (WJ) (F—ferrite, AF—acicular ferrite, PF—polygonal ferrite, LB—lath bainite, GB—granular bainite, M-A—martensite-austenite)(a) base metal (BM) (b) weld metal (WM) (c) coarse grained heat affected zone (CGHAZ)(d) fine grained heat affected zone (FGHAZ) (e) intercritical heat affected zone (ICHAZ)

No.

Mass fraction / %

T / ℃

Corrosion rate / (g·m-2·h-1)
c(Cl-)c(HAc)c(MEG)
BMWJ
11.000300.4210.547
21.00.1010400.8530.984
31.00.3020501.0001.390
41.00.5030601.5502.190
53.0020400.3250.350
63.00.1030300.2930.500

7

3.00.300601.9402.390
83.00.5010502.0503.530
95.0030500.3150.315
105.00.1020300.9961.170
115.00.3010600.9781.410
125.00.500400.3340.623
137.0010600.6350.725
147.00.100501.1401.550
157.00.3030400.5990.700
167.00.5020300.9201.560
Table 1  Orthogonal results and analysis of the BM and WJ
SpecimenSource of varianceSum of squareDFMean squareF
BMModel2.1521.075.54
Error2.52130.19
Total4.6715
WJModel5.8222.916.77
Error5.58130.43
Total11.415
Table 2  Equation significant variance analysis table
Fig.2  Open circuit potentials (EOCP) of BM (a) and WM (b) in simulated natural gas condensate at different temperatures
Fig.3  EIS of BM (a) and WM (b) in simulated natural gas condensate at different temperatures
Fig.4  Equivalent circuit for fitting EIS data (Rs—solution resistance, Rp—polarization resistance, RL—inductive resistance, L—inductance, Cdl—double layer capacitance)

Specimen

T

Rs

Ω·cm2

Cdl

μF·cm-2

n

Rp

Ω·cm2

RL

Ω·cm2

L

H·cm-2

BM303.15200.84135.0292.0312.4
402.76920.8578.7234.1121.3
502.812200.8424.662.714.1
602.732100.7811.623.62.1
WM304.41640.85304.2
403.82150.84151.4--
503.23090.82110.0--
603.04400.8359.0--
Table 3  Fitting data of EIS of BM and WM in simulated natural gas condensate at different temperatures
Fig.5  Potentiodynamic polarization curves of BM (a) and WM (b) in simulated natural gas condensate at different temperatures
SpecimenT / ℃ba / mVbc / mVicorr / (mA·cm-2)Ecorr / V
BM30401620.111-0.544
40502310.304-0.559
50772760.976-0.575
60832432.562-0.594
WM30891720.058-0.593
40801520.085-0.598
50771810.145-0.597
60731520.246-0.618
Table 4  Fitting data of potentiodynamic polarization curves of BM and WM in simulated natural gas condensate at different temperatures
Fig.6  Open circuit potential of BM (a) and WM (b) in simulated natural gas condensate in different concentrations of HAc (c(HAc))
Fig.7  EIS of BM (a) and WM (b) in simulated natural gas condensate in different concentrations of HAc

Specimen

c(HAc)

%

Rs

Ω·cm2

Cdl

μF·cm-2

n

Rp

Ω·cm2

RL

Ω·cm2

L

H·cm-2

BM04.37650.79181663572
0.104.04730.83172369481
0.304.25550.82152371378
0.503.15250.84136321288
WM04.61240.86510--
0.104.41760.8548832561692
0.304.41640.8530437202620
0.504.96460.79208725910
Table 5  Fitting data of EIS of BM and WM in simulated natural gas condensate in different concentrations of HAc
Fig.8  Potentiodynamic polarization curves of BM (a) and WM (b) in simulated natural gas condensate in different concentrations of HAc
Specimenc(HAc) / %ba / mVbc / mVicorr / (mA·cm-2)Ecorr / V
BM05810630.0944-0.667
0.10502470.1513-0.572
0.30472030.1469-0.559
0.50401620.1113-0.544
WM0649970.0089-0.685
0.10881860.0355-0.602
0.30851530.0330-0.589
0.50891720.0580-0.593
Table 6  Fitting data of potentiodynamic polarization curves of BM and WM in simulated natural gas condensate in different concentrations of HAc
Fig.9  Macroscopic corrosion morphologies of X80 steel WJ(a) front view (b) side view
Fig.10  Corrosion rates of BM (a) and WJ (b) of X80 steel in simulated natural gas condensate at different temperatures
Fig.11  Corrosion rates of BM (a) and WJ (b) of X80 steel in simulated natural gas condensate in different concentrations of HAc
[1] Wang S P. Repairing corrosion defects of subsea pipe and the availability of repair method [J]. Oil Gas Storage Transp., 2011, 30: 949
[1] (王诗鹏. 海底管道腐蚀缺陷修复评估方案的确定 [J]. 油气储运, 2011, 30: 949)
[2] Qiao Q, Cheng G X, Wu W, et al. Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors [J]. Eng. Fail. Anal., 2016, 64: 126
[3] Li Y D, Tang X, Li Y. Research progress of localized corrosion of welded joints [J]. Mater. Rev., 2017, 31(11): 158
[3] (李亚东, 唐 晓, 李 焰. 焊接接头局部腐蚀的研究进展 [J]. 材料导报, 2017, 31(11): 158)
[4] Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
[5] Li Y, Li Y D, Yang R, et al. Reconstruction of X80 pipeline steel welded joints and corrosion behavior in NACE solution [J]. J. China Univ. Pet. (Ed. Nat. Sci.), 2018, 42(6): 153
[5] (李 焰, 李亚东, 杨 瑞等. X80管线钢焊接接头重构及其在NACE溶液中的腐蚀行为 [J]. 中国石油大学学报(自然科学版), 2018, 42(6): 153)
[6] Guo Y L, Ma T X, Liu W Y, et al. Numerical simulation of welding residual stress of X80 pipeline steel based on ABAQUS [J]. Heat Treat. Met., 2018, 43(9): 218
[6] (郭杨柳, 马廷霞, 刘维洋等. 基于ABAQUS的X80管线钢焊接残余应力数值模拟 [J]. 金属热处理, 2018, 43(9): 218)
[7] Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution [J]. Corros. Sci., 2009, 51: 1714
[8] Huang M, Zhang M X, Wang Y, et al. Electrochemical behaviour of X80 pipeline steel with alumina coating [J]. Surf. Eng., 2015, 31(4): 295
[9] Zhao P X, Zuo X R, Chen K, et al. Corrosion behavior of X80 pipeline steel with strain-based design [J]. Trans. Mater. Heat Treat., 2013, 34(Suppl.2): 221
[9] (赵鹏翔, 左秀荣, 陈 康等. X80大变形管线钢的腐蚀行为 [J]. 材料热处理学报, 2013, 34(增刊 2): 221)
[10] Liu Z Y, Wan H X, Li C, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea [J]. J. Chin. Soc. Corros. Protect., 2014, 34: 321
[10] (刘智勇, 万红霞, 李 禅等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比 [J]. 中国腐蚀与防护学报, 2014, 34: 321)
[11] Luo J H, Luo S J, Li L F, et al. Stress corrosion cracking behavior of X90 pipeline steel and its weld joint at different applied potentials in near-neutral solutions [J]. Nat. Gas Ind., 2019, 6B: 138
[12] Giorgetti V, Santos E A, Marcomini J B, et al. Stress corrosion cracking and fatigue crack growth of an API 5L X70 welded joint in an ethanol environment [J]. Int. J. Pressure Vessels Piping, 2019, 169: 223
[13] Ma G, Zuo X R, Hong L, et al. Investigation of corrosion behavior of welded joint of X70 pipeline steel for deep sea [J]. Acta Metall. Sin., 2018, 54: 527
[13] (马 歌, 左秀荣, 洪 良等. 深海用X70管线钢焊接接头腐蚀行为研究 [J]. 金属学报, 2018, 54: 527)
[14] Jegdi? B, Bobi? B, Radojkovi? B, et al. Corrosion resistance of welded joints of X5CrNi18-10 stainless steel [J]. J. Mater. Process. Technol., 2019, 266: 579
[15] Alizadeh M, Bordbar S. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution [J]. Corros. Sci., 2013, 70: 170
[16] Zhang X, Zevenbergen J F, Spruijt M P N, et al. Corrosion of pipe steel in CO2 containing impurities and possible solutions [J]. Energy Proced., 2013, 37: 3147
[17] Zhu S D, Fu A Q, Miao J, et al. Corrosion of N80 carbon steel in oil field formation water containing CO2 in the absence and presence of acetic acid [J]. Corros. Sci., 2011, 53: 3156
[18] Asadian M, Sabzi M, Anijdan S H M. The effect of temperature, CO2, H2S gases and the resultant iron carbonate and iron sulfide compounds on the sour corrosion behaviour of ASTM A-106 steel for pipeline transportation [J]. Int. J. Pressure Vessels Piping, 2019, 171: 184
[19] Chen C F, Lu M X, Zhao G X, et al. Effects of temperature, Cl- concentration and Cr on electrode reactions of CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2003, 39: 848
[19] (陈长风, 路民旭, 赵国仙等. 温度、Cl-浓度、Cr元素对N80钢CO2腐蚀电极过程的影响 [J]. 金属学报, 2003, 39: 848)
[20] das Chagas Almeida T, Bandeira M C E, Moreira R M, et al. New Insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
[21] Keddam M, Mottos O R, Takenouti H. Reaction model for iron dissolution studied by electrode impedance I. Experimental results and reaction model [J]. J. Electrochem. Soc., 1981, 128: 257
[22] Li Y D, Li Q, Tang X, et al. Reconstruction and characterization of galvanic corrosion behavior of X80 pipeline steel welded joints [J]. Acta Metall. Sin., 2019, 55: 801
[22] (李亚东, 李 强, 唐 晓等. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征 [J]. 金属学报, 2019, 55: 801)
[23] Hemmingsen T, Hovdan H, Sanni P, et al. The influence of electrolyte reduction potential on weld corrosion [J]. Electrochim. Acta, 2002, 47: 3949
[24] Huang H H, Tsai W T, Lee J T. Electrochemical behavior of the simulated heat-affected zone of A516 carbon steel in H2S solution [J]. Electrochim. Acta, 1996, 41: 1191
[25] Zhang G A, Cheng Y F. Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution [J]. Electrochim. Acta, 2009, 55: 316
[26] Zhang S Z, Cheng Y F, Feng X D, et al. Performance characteristics and technical challenges of X80 pipeline steel [J]. Oil Gas Storage Transp., 2019, 38: 481
[26] (张圣柱, 程玉峰, 冯晓东等. X80管线钢性能特征及技术挑战 [J]. 油气储运, 2019, 38: 481)
[27] Honarvar Nazari M, Allahkaram S R, Kermani M B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel [J]. Mater. Des., 2010, 31: 3559
[28] de Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
[29] Chen C F, Lu M X, Zhao G X, et al. The EIS analysis of electrode reactions of CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2002, 38: 770
[29] (陈长风, 路民旭, 赵国仙等. N80钢CO2腐蚀电极过程交流阻抗分析 [J]. 金属学报, 2002, 38: 770)
[30] Llongueras J G, Hernandez J, Munoz A, et al. Mechanism of FeCO3 formation on API X70 pipeline steel in brine solutions containing CO2 [A]. Proceedings of CORROSION 2005 [C]. Houston, Texas: NACE International, 2005: 14
[31] Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production—A compendium [J]. Corrosion, 2003, 59: 659
[32] Zhao G X, Yan M L, Lu M X, et al. Advances in research of CO2 corrosion in oil and gas industry [J]. Corros. Protect., 1998, 19(2): 51
[32] (赵国仙, 严密林, 路民旭等. 石油天然气工业中CO2腐蚀的研究进展 [J]. 腐蚀与防护, 1998, 19(2): 51)
[33] Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52: 280
[34] Ne?i? S, Nordsveen M, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 2: A numerical experiment [J]. Corrosion, 2003, 59: 489
[35] Davies D H, Burstein G T. The effects of bicarbonate on the corrosion and passivation of iron [J]. Corrosion, 1980, 36: 416
[36] Ogundele G I, White W E. Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide [J]. Corrosion, 1986, 42: 71
[37] Tran T, Brown B, Nesic S, et al. Investigation of the mechanism for acetic acid corrosion of mild steel [A]. Proceedings of CORROSION 2013 [C]. Orlando: NACE International, 2013: 12
[38] Zhang Y L, Du M, Zhang J, et al. Corrosion behavior of X65 carbon steel in simulated oilfield produced water [J]. Mater. Corros., 2015, 66: 366
[1] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
[2] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[3] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[4] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[7] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[8] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[9] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[10] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[11] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
[12] Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. 金属学报, 2017, 53(7): 808-816.
[13] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[14] Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. 金属学报, 2017, 53(12): 1579-1587.
[15] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
No Suggested Reading articles found!