Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (9): 1273-1280    DOI: 10.11900/0412.1961.2018.00125
Orginal Article Current Issue | Archive | Adv Search |
Sn-Induced Modification of the Precipitation Pathways upon High-Temperature Ageing in an Al-Mg-Si Alloy
Xuemei XIANG, Yuxiang LAI, Chunhui LIU, Jianghua CHEN()
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Cite this article: 

Xuemei XIANG, Yuxiang LAI, Chunhui LIU, Jianghua CHEN. Sn-Induced Modification of the Precipitation Pathways upon High-Temperature Ageing in an Al-Mg-Si Alloy. Acta Metall Sin, 2018, 54(9): 1273-1280.

Download:  HTML  PDF(4350KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 6xxx series aluminum alloys (Al-Mg-Si(-Cu) alloys) are widely used for the industrial applications in the lightweight construction, automotive and architecture because of their light weight, medium to high strength, excellent formability and good corrosion resistance. It has been reported that trace Sn addition can accelerate ageing kinetics and increase peak hardness of Al-Mg-Si alloys when ageing at high temperatures (>210 ℃). However, the mechanism about it has not been investigated comprehensively yet. For Mg-excess Al-Mg-Si alloys, when aged at 250 ℃, the alloys are hardened by the β'-precipitates. While after applying natural ageing prior to artificial ageing, the β"-precipitates will be formed, with the percentage of which increasing with natural ageing time, and eventually become the main hardening precipitates. In this work, the effect of Sn on natural ageing and subsequent artificial ageing at 250 ℃ in a Mg-rich Al-Mg-Si alloy was investigated by Vickers microhardness measurements and TEM. The results show that adding a small amount (0.2%, mass fraction) of Sn in the Mg-rich Al-Mg-Si alloy can modify the precipitation pathways upon 250 ℃-ageing: when the alloy is directly artificially aged, the β"-precipitates are dominant, whereas when the alloy is subjected to "natural ageing+artificial ageing" treatment, upon prolonged natural ageing time, the percentage of β"-precipitates would not increase but decrease and that of β'-precipitates would not decrease but increase, but ultimately the β"-precipitates are still dominant over the β'-precipitates. The Sn-induced modification of the precipitation pathways can significantly enhance the age-hardening potential of the alloy upon high-temperature artificial ageing. The addition of Sn increases the effective Si-concentration in the matrix, and consequently changes the precipitation pathways in the Sn-free alloy, which is different from the explanation proposed in literatures.

Key words:  Al-Mg-Si alloy      ageing      precipitation      trace element      transmission electron microscopy     
Received:  04 April 2018     
ZTFLH:  TG113  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0300801) and National Natural Science Foundation of China (Nos.11427806, 51471067 and 51671082)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00125     OR     https://www.ams.org.cn/EN/Y2018/V54/I9/1273

Fig.1  Evolution of hardness during natural ageing for the Al-Mg-Si alloy (a) and Al-Mg-Si-Sn alloy (b)
Fig.2  Evolution of hardness during artificial ageing at 250 ℃ after different natural ageing delay times for the Al-Mg-Si alloy (a, b)[20] and Al-Mg-Si-Sn alloy (c, d). Figs.2b[20] and d show the corresponding peak-hardness for artificial ageing vs natural ageing time
Fig.3  Bright-field TEM images of the precipitate morphologies (a, c, e) and the corresponding precipitate length distributions (b, d, f) of the Al-Mg-Si-Sn alloys peak-aged at 250 ℃ for 5 min after different natural ageing time
(a, b) without natural ageing (c, d) natural ageing for 4 d (e, f) natural ageing for 2 weeks
Fig.4  HRTEM images and the corresponding FFT patterns (insets) of the main precipitates in the Al-Mg-Si-Sn alloys peak-aged at 250 ℃ for 5 min after different natural ageing times
(a) without natural ageing (b) natural ageing for 4 d (c, d) natural ageing for 2 weeks
Fig.5  The relative frequencies of β"-precipitate and β’-precipitate in the Al-Mg-Si alloy (a)[20] and Al-Mg-Si-Sn alloy (b) upon peak ageing at 250 ℃ following different natural ageing durations (NA—natural ageing)
Fig.6  An illustration of the effect of matrix Si-concentration (CSi(+Sn)) on nucleation energy barriers (?Gβ’ and ?Gβ”) of β’ and β” (C0Si(+Sn)—the value at which ?Gβ’=?Gβ”; Ceqβ"Si(+Sn) and CeqβSi(+Sn)—the critical CSi(+Sn) needed for the formation of β” and β’, respectively; ΔG—nucleation energy)[11]
[1] Edwards G A, Stiller K, Dunlop G L, et al.The precipitation sequence in Al-Mg-Si alloys[J]. Acta Mater., 1998, 46: 3893
[2] Marioara C D, Andersen S J, Jansen J, et al.The influence of temperature and storage time at RT on nucleation of the β" phase in a 6082 Al-Mg-Si alloy[J]. Acta Mater., 2003, 51: 789
[3] Zhang H, Li L X, Yuan D, et al.Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures[J]. Mater. Charact., 2007, 58: 168
[4] Tian N, Zhao G, Zuo L, et al.Study on the strain hardening behavior of Al-Mg-Si-Cu alloy sheet for automotive body[J]. Acta Metall. Sin., 2010, 46: 613(田妮, 赵刚, 左良等. 汽车车身用Al-Mg-Si-Cu合金薄板应变强化行为的研究[J]. 金属学报, 2010, 46: 613)
[5] Li L X, Zhou J, Zhang H.Advanced extrusion technology and application of aluminium, magnesium alloy for vehicle body[J]. J. Mech. Eng., 2012, 48(18): 35(李落星, 周佳, 张辉. 车身用铝、镁合金先进挤压成形技术及应用[J]. 机械工程学报, 2012, 48(18): 35)
[6] Zandbergen H W, Andersen S J, Jansen J.Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies[J]. Science, 1997, 277: 1221
[7] Chen J H, Costan E, van Huis M A, et al. Atomic pillar-based nanoprecipitates strengthen Al-Mg-Si alloys[J]. Science, 2006, 312: 416
[8] Vissers R, van Huis M A, Jansen J, et al. The crystal structure of the β' phase in Al-Mg-Si alloys[J]. Acta Mater., 2007, 55: 3815
[9] Ravi C, Wolverton C.First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates[J]. Acta Mater., 2004, 52: 4213
[10] Wang B, Wang X J, Song H, et al.Strengthening effects of microstructure evolution during early ageing process in Al-Mg-Si alloy[J]. Acta Metall. Sin., 2014, 50: 685(汪波, 王晓姣, 宋辉等. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响[J]. 金属学报, 2014, 50: 685)
[11] Lai Y X, Jiang B C, Liu C H, et al.Low-alloy-correlated reversal of the precipitation sequence in Al-Mg-Si alloys[J]. J. Alloys Compd., 2017, 701: 94
[12] Pogatscher S, Antrekowitsch H, Leitner H, et al.Mechanisms controlling the artificial aging of Al-Mg-Si Alloys[J]. Acta Mater., 2011, 59: 3352
[13] de Geuser F, Lefebvre W, Blavette D. 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy[J]. Philos. Mag. Lett., 2006, 86: 227
[14] Tors?ter M, Hasting H S, Lefebvre W, et al.The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys[J]. J. Appl. Phys., 2010, 108: 073527
[15] R?yset J, Stene T, S?ter J A, et al. The effect of intermediate storage temperature and time on the age hardening response of Al-Mg-Si Alloys [J]. Mater. Sci. Forum, 2006, 519-521: 239
[16] Banhart J, Chang C S T, Liang Z Q, et al. Natural aging in Al-Mg-Si alloys—A process of unexpected complexity[J]. Adv. Eng. Mater., 2010, 12: 559
[17] Yamada K, Sato T, Kamio A. Effects of quenching conditions on two-step aging behavior of Al-Mg-Si Alloys [J]. Mater. Sci. Forum, 2000, 331-337: 669
[18] Banhart J, Lay M D H, Chang C S T, et al. Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy[J]. Phys. Rev., 2011, 83B: 014101
[19] Zurob H S, Seyedrezai H.A model for the growth of solute clusters based on vacancy trapping[J]. Scr. Mater., 2009, 61: 141
[20] Liu C H, Lai Y X, Chen J H, et al.Natural-aging-induced reversal of the precipitation pathways in an Al-Mg-Si alloy[J]. Scr. Mater., 2016, 115: 150
[21] Chang C S, Wieler I, Wanderka N, et al.Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at% Mg-0.38at% Si alloy[J]. Ultramicroscopy, 2009, 109: 585
[22] Saga M, Kikuchi M.Effect of Sn Addition on the two-step aging behavior in Al-Mg-Si Alloys for automotive application [A]. Proceedings of the 9th International Conference on Aluminium Alloys[C]. Melbourne: Institute of Material Engineering Australasia Ltd, 2004: 520
[23] Pogatscher S, Antrekowitsch H, Werinos M, et al.Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys[J]. Phys. Rev. Lett., 2014, 112: 225701
[24] Werinos M, Antrekowitsch H, Fragner W, et al.Influence of temperature on natural aging kinetics of AA6061 modified with Sn[A]. Light Metals 2015 [M]. Cham: Springer International Publishing, 2015: 367
[25] Werinos M, Antrekowitsch H, Kozeschnik E, et al.Ultrafast artificial aging of Al-Mg-Si alloys[J]. Scr. Mater., 2016, 112: 148
[26] Shishido H, Takaki Y, Kozuka M, et al.Effects of Sn addition on clustering and age-hardening behavior in a pre-aged Al-Mg-Si alloy[J]. Mater. Sci. Forum, 2016, 877: 455
[27] Pogatscher S, Antrekowitsch H, Ebner T, et al.The role of co-clusters in the artificial aging of AA6061 and AA6060 [A]. Light Metals 2012[C]. New York: Springer, 2012: 415
[28] Murayama M, Hono K.Pre-precipitate clusters and precipitation processes in Al-Mg-Si-Cu alloys[J]. Acta Mater., 1999, 47: 1537
[1] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[6] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[11] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[12] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[13] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[14] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[15] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
No Suggested Reading articles found!