Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (4): 591-602    DOI: 10.11900/0412.1961.2017.00334
Orginal Article Current Issue | Archive | Adv Search |
Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃
Yu ZHANG1, Qing WANG1, Honggang DONG1, Chuang DONG1(), Hongyu ZHANG2, Xiaofeng SUN2
1 Key laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(6577KB) 
Export:  BibTeX | EndNote (RIS)      

It has been pointed out recently that the compositions of industrial alloys are originated from cluster-plus-glue-atom structure units in solid solutions. Specifically for nickel-based superalloys, after properly grouping the alloying elements into Al, Ni-like (, including Ni, Co, Fe, Re, Ru and Ir), γ′γ, including Ta, Ti, V, Nb), and γ-forming Cr-like (γ, including Cr, Mo and W), the optimal formula for single-crystal superalloys has been established [Al-12](Al1γ0.5γ1.5). In this work, the first generation single-crystal superalloys were investigated on the basis of the proposed formula, by using =(Ni and Co), γ=(Ta and Ti), and γ=(Cr, Mo and W). Two series of alloys were designed, formulated respectively as group A: [Al-Ni11Co1](Al1TaxTi0.5-xCr1W0.25Mo0.25), with x=0, 0.25 and 0.5 (the corresponding mass fractions of Ta and Ti are respectively 0Ta-2.65Ti, 4.82Ta-1.26Ti and 9.32Ta-0Ti), and group B: [Al-Ni12-yCoy](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25), with y=1.5, 1.75, 2 and 2.5 (the corresponding mass fractions of Co are respectively 9.43Co, 11Co, 12.57Co and 15.71Co). The single-crystal superalloys were prepared using selector technique. And then they underwent the following tests of incipient melting, standard heat treatment and 1000 h long term ageing at 900 ℃. It is found that: (1) In group A, with increasing Ta content (decreasing Ti), all the incipient melting temperatures are increased to above 1330 ℃, and to the highest value is between 1335 ℃ and 1340 ℃ for alloy 9.32Ta-0Ti; the γ/γ′ lattice negative misfits after standard heat treatment are reduced from -0.262% (0Ta-2.65Ti) to -0.247% (9.32Ta-0Ti); the γ′ coarsening tendency after long-term ageing is deduced, and alloy 9.32Ta-0Ti has the lowest coarsening rate (K=5.6×10-5 μm3/h). (2) In group B, the Co content does not influence the incipient melting temperature (always above 1330 ℃) and the coarsening rate of γ′ after long-term ageing. The major role of Co is to increase the mean size of the γ′ precipitates to about 0.55 μm and the γ′ volume fraction to about 69% after the standard heat treatment. These two groups of alloys have their γ′ coarsening rates approaching the level of third-generation single-crystal superalloys (K≈(2.08~3.82)×10-5 μm3/h).

Key words:  nickel-based single-crystal superalloy      cluster-plus-glue-atom model      long-term ageing      lattice misfit      γ′ coarsening rate;     
Received:  14 August 2017     
ZTFLH:  TG113  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0701401) and National Natural Science Foundation of China (No.11674045)

Cite this article: 

Yu ZHANG, Qing WANG, Honggang DONG, Chuang DONG, Hongyu ZHANG, Xiaofeng SUN. Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃. Acta Metall Sin, 2018, 54(4): 591-602.

URL:     OR

Fig.1  Schematic of fcc-CN12 cluster ([Al-Ni12] cluster, red and green balls represent Ni and Al atoms respectively)
Group Alloy Cluster formula Alloy / (mass fraction / %)
Ta Ti Co Al Cr Mo W Ni
A 0Ta-2.65Ti [Al-Ni11Co1](Al1Ti0.5Cr1W0.25Mo0.25)
x=0,ρ=8.18 gcm-3
N 0 2.65 6.52 5.97 5.75 2.65 5.08 Bal.

M 0 2.35 6.62 5.49 5.43 2.63 4.96
E -0.30 0.10 -0.48 -0.32 -0.02 -0.12
4.82Ta-1.28Ti [Al-Ni11Co1](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
x=0.25,ρ=8.44 gcm-3
N 4.82 1.28 6.29 5.76 5.55 2.56 4.90
M 4.77 1.08 6.17 5.46 5.29 2.73 4.96
E -0.05 -0.20 -0.12 -0.30 -0.26 0.17 0.06
9.32Ta-0Ti [Al-Ni11Co1](Al1Ta0.5Cr1W0.25Mo0.25)
x=0.5,ρ=8.72 gcm-3
N 9.32 0 6.07 5.56 5.36 2.47 4.73
M 9.11 0 6.00 5.28 5.17 2.45 4.77
E -0.21 -0.07 -0.28 -0.19 -0.02 0.04
B 9.43Co [Al-Ni10.5Co1.5](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=1.5,ρ=8.47 gcm-3
N 4.82 1.28 9.43 5.75 5.54 2.56 4.90
M 4.68 1.17 9.36 5.57 5.43 2.64 4.91
E -0.14 -0.11 -0.07 -0.18 -0.11 0.08 0.01
11Co [Al-Ni10.25Co1.75](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=1.75,ρ=8.45 gcm-3
N 4.82 1.28 11.00 5.75 5.54 2.56 4.90
M 4.70 1.17 10.92 5.54 5.41 2.64 4.89
E -0.12 -0.11 -0.08 -0.21 -0.13 0.08 -0.01
12.57Co [Al-Ni10Co2](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=2,ρ=8.46 gcm-3
N 4.82 1.28 12.57 5.75 5.54 2.56 4.90
M 4.72 1.17 12.48 5.54 5.38 2.64 4.88
E -0.10 -0.11 -0.09 -0.21 -0.16 0.08 -0.02
15.71Co [Al-Ni9.5Co2.5](Al1Ta0.25Ti0.25Cr1W0.25Mo0.25)
y=2.5,ρ=8.44 gcm-3
N 4.82 1.28 15.71 5.75 5.54 2.56 4.90
M 4.77 1.08 15.68 5.52 5.34 2.72 4.72
E -0.05 -0.20 -0.03 -0.23 -0.20 0.16 -0.18
Table 1  Nominal compositions (N), XRF results of parent alloys (M, measures), errors (E) and densities (ρ) of single-crystal samples
Fig.2  SEM images of samples at the lowest incipient melting temperatures (The lowest temperatures for almost all the samples are 1335 ℃ except for 9.32Ta-0Ti (1340 ℃))

(a) 0Ta-2.65Ti (b) 4.82Ta-1.28Ti (c) 9.32Ta-0Ti (d) 9.43Co (e) 11Co (f) 12.57Co (g) 15.71Co

Fig.3  SEM images of samples after standard heat treatment (HT) and long-term ageing for 0Ta-2.65Ti (a1~a4), 4.82Ta-1.28Ti (b1~b4), 9.32Ta-0Ti (c1~c4), 9.43Co (d1~d4), 11Co (e1~e4), 12.57Co (f1~f4) and 15.71Co (g1~g4) alloys

(a1~g1) HT (a2~g2) 900 ℃, 300 h (a3~g3) 900 ℃, 500 h (a4~g4) 900 ℃, 1000 h

Fig.4  Analyses on γ′ precipitations after standard HT and 900 ℃, 1000 h long-term ageing for group A (in dash line) and group B (in solid lines) alloys (r—size of γ′, t—time, K—coarsening rate, r0—mean size of initial γ′ (after standard HT), rt —mean size of instantaneous γ′)

(a) volume fraction of γ′ after standard HT

(b) size of γ′ after standard HT and long-term ageing

(c) size of γ′ vs time after standard HT and long-term ageing

(d) coarsening rate of γ′ after the long-term ageing

Fig.6  Alloying element vector plot from d-electron method, showing element classification feature (Bo is the bond order between M element atoms and nickel atoms; Md is the d-orbital energy level of M element)
Fig.5  XRD spectra after standard HT (a, c, e) and SEM images creeped at 1050 ℃, 120 MPa (b, d, f) for group A alloys of 0Ta-2.65Ti (a, b), 4.82Ta-1.28Ti (c, d) and 9.32Ta-0Ti (e, f)
[1] Caron P, Khan T.Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerosp. Sci. Technol., 1999, 3: 513
[2] Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 19
[3] Jin T, Zhou Y Z, Wang X G, et al.Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153(金涛, 周亦胄, 王新广等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153)
[4] Wang B, Zhang J, Huang T W, et al.Effect of Co on microstructural stability of the third generation Ni-based single crystal superalloys[J]. J. Mater. Res., 2016, 31: 1328
[5] Wang X G, Li J R, Yu J, et al.Tensile anisotropy of single crystal superalloy DD9[J]. Acta Metall. Sin., 2015, 51: 1253(王效光, 李嘉荣, 喻健等. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51: 1253)
[6] Wang B, Zhang J, Pan X J, et al.Effects of W on microstructural stability of the third generation Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2017, 53: 298(王博, 张军, 潘雪娇等. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53: 298)
[7] Li J R, Xiong J C, Tang D Z.Advanced High Temperature Structural Materials and Technology (I) [M]. Beijing: National Defend Industry Press, 2012: 3(李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(上) [M]. 北京: 国防工业出版社, 2012: 3)
[8] Zheng Y R, Zhang D T.Color Metallographic Investigation of Superalloys and Steels [M]. Beijing: National Defense Industry Press, 1999: 10(郑运荣, 张德堂. 高温合金与钢的彩色金相研究 [M]. 北京: 国防工业出版社, 1999: 10)
[9] Goerler J V, Lopez-Galilea I, Roncery L M, et al.Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation[J]. Acta Mater., 2017, 124: 151
[10] Sabol G P, Stickler R.Microstructure of nickel-based superalloys[J]. Phys. Status Solidi, 1969, 35: 11
[11] Betteridge W, Shaw S W K. Development of superalloys[J]. Mater. Sci. Technol., 1987, 3: 682
[12] Academic Committee of the Superalloys, CSM. China Superalloys Handbook (I) [M]. Beijing: China Zhijian Publishing House, Standards Press of China, 2012: 1(中国金属学会高温材料分会. 中国高温合金手册(上) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 1)
[13] Li J R, Xiong J C, Tang D Z.Advanced High Temperature Structural Materials and Technology (II) [M]. Beijing: National Defense Industry Press, 2012: 1(李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(下) [M]. 北京: 国防工业出版社, 2012: 1)
[14] Jarrett R N, Collier J P, Tien J K.Effects of cobalt on the hot workability of nickel-base superalloys [A]. Superalloys 1984[C]. Champion, PA: TMS, 1984: 455
[15] Ye J.The Nickel-Based Superalloys of the United States of America [M]. Beijing: Science Press, 1978: 48(冶军. 美国镍基高温合金 [M]. 北京: 科学出版社, 1978: 48)
[16] Academic Committee of the Superalloys, CSM. China Superalloys Handbook (II) [M]. Beijing: China Zhijian Publishing House, Standards Press of China, 2012: 1(中国金属学会高温材料分会. 中国高温合金手册(下) [M]. 北京: 中国质检出版社, 中国标准出版社, 2012: 1)
[17] Reed R C, Tao T, Warnken N.Alloys-by-design: Application to nickel-based single crystal superalloys[J]. Acta Mater., 2009, 57: 5898
[18] Nathal M V, Maier R D, Ebert L J.The Influence of cobalt on the microstructure of the nickel-base superalloy MAR-M247[J]. Metall. Trans., 1982, 13A: 1775
[19] Strangman T E, Hoppin III G S, Phipps C M, et al. Development of exothermically cast single-crystal Mar-M 247 and derivative alloys [A]. Proceedings of the 4th International Symposium on Superalloys[C]. Champion, PA: Metallurgical Society of AIME and American Society for Metals, 1980: 225
[20] Bürgel R, Grossmann J, Lüsebrink O, et al.Development of a new alloy for directional solidification of large industrial gas turbine blades [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 25
[21] Walston W S, O'Hara K S, Ross E W, et al. René N6: Third generation single crystal superalloy [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 27
[22] Erickson G L.The development of the CMSX-11B and CMSX-11C alloys for industrial gas turbine application [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 45
[23] Erickson G L.The development and application of CMSX(R)-10 [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 35
[24] Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy [A]. Proceedings of the 10th International Symposium on Superalloys[C]. Champion, PA: TMS, 2004: 15
[25] Fu C L, Reed R, Janotti A, et al.On the diffusion of alloying elements in the nickel-base superalloys [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 867
[26] Wang W Z, Jin T, Zhao N R, et al.Effect of cobalt on chemical segregation and solution process in Re-containing single crystal superalloys[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(suppl.3): 1978
[27] Murakami H, Yamagata T, Harada H, et al.The influence of Co on creep deformation anisotropy in Ni-base single crystal superalloys at intermediate temperatures[J]. Mater. Sci. Eng., 1997, A223: 54
[28] Caldwell E C, Feda F J, Fuchs G E.Segregation of elements in high refractory content single crystal nickel based superalloys [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 811
[29] Zhang J.Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792[J]. Scr. Mater., 2003, 48: 677
[30] Zhang J, Singer R F.Hot tearing of nickel-based superalloys during directional solidification[J]. Acta Mater., 2002, 50: 1869
[31] Hultgren R, Desai P D, Hawkins D T, et al.Selected Values of the Thermodynamic Properties of the Elements[M]. Metals Park, Ohio: American Society for Metals, 1973: 126
[32] Sato A, Harada H, Yeh A C, et al.A 5th generation SC superalloy with balanced high temperature properties and processability [A]. Superalloys 2008[C]. Champion, PA: TMS, 2008: 131
[33] Kawagishi K, Yeh A C, Yokokawa T, et al.Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 [A]. Superalloy 2012[C]. Champion, PA: TMS, 2012: 189
[34] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
[35] Hong H L, Wang Q, Dong C, et al.Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys[J]. Sci. Rep., 2014, 4: 7065
[36] Jiang B B, Wang Q, Dong C.A cluster-formula composition design approach based on the local short-range order in solid solution structure[J]. Acta Phys. Sin., 2017, 66: 026102(姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法[J]. 物理学报, 2017, 66: 026102)
[37] Qian S N, Dong C.Composition formulas for Mg-Al industrial alloy specifications[J]. Acta Phys. Sin., 2017, 66: 136103(钱圣男, 董闯. Mg-Al系工业合金牌号的成分式解析[J]. 物理学报, 2017, 66: 136103)
[38] Wang Q, Zha Q F, Liu E X, et al.Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model[J]. Acta Metall. Sin., 2012, 48: 1201(王清, 查钱锋, 刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报, 2012, 48: 1201)
[39] Wen D H, Jiang B B, Wang Q, et al.Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures[J]. Mater. Des., 2017, 128: 34
[40] Wang Q, Ji C J, Wang Y M, et al.β-Ti alloys with low Young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A: 1872
[41] Pang C, Wang Q, Zhang R Q, et al.β Zr-Nb-Ti-Mo-Sn alloys with low Young?s modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model[J]. Mater. Sci. Eng., 2015, A626: 369
[42] Wang Q, Ma Y, Jiang B B, et al.A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scr. Mater., 2016, 120: 85
[43] Ma Y, Jiang B B, Li C L, et al.The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys[J]. Metals, 2017, 7: 57
[44] Mughrabi H.Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys: Some open problems[J]. Mater. Sci. Technol., 2009, 25: 191
[45] Mughrabi H.The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys[J]. Acta Mater., 2014, 81: 21
[46] Yu J J, Wang Q, Li X N, et al.Composition design of nickel-base superalloys based on cluster structural model[J]. Trans. Mater. Heat Treat., 2013, 34(8): 184(于晶晶, 王清, 李晓娜等. 基于团簇结构模型的镍基高温合金成分设计[J]. 材料热处理学报, 2013, 34(8): 184)
[47] Dong D D, Zhang S, Wang Z R, et al.Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing[J]. J. Appl. Crystallogr., 2015, 48: 2002
[48] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans, 2005, 46: 2817
[49] Qin G Y.Quantitative Metallography [M]. Chengdu: Sichuan Science and Technology Press, 1987: 5(秦国友. 定量金相[M]. 成都: 四川科学技术出版社, 1987: 5)
[50] Vander Voort G F. Metallography Principles and Practice[M]. New York: McGraw-Hill Book Company, 1984: 426
[51] Li Z M, Xia Z J, Qin G Y.Image analysing techniques for quantitative metalography[J]. Opto-Elec. Eng., 1995, 22(4): 46(李志敏, 夏志坚, 秦国友. 定量金相的图象分析技术[J]. 光电工程. 1995, 22(4): 46)
[52] Wang W Z, Jin T, Liu J L, et al.Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys[J]. Mater. Sci. Eng., 2008, A479: 148
[53] Ardell A J.The effect of volume fraction on particle coarsening: Theoretical considerations[J]. Acta Metall., 1972, 20: 61
[54] Murata Y, Miyazaki S, Morinaga M, et al.Hot corrosion resistant and high strength nickel-based single crystal and directionally-solidified superalloys developed by the d-electrons concept [A]. Superalloys 1996[C]. Warrendale, PA: TMS, 1996: 61
[55] Carroll L J, Feng Q, Mansfield J F, et al.Elemental partitioning in Ru-containing nickel-base single crystal superalloys[J]. Mater. Sci. Eng., 2007, A457: 292
[56] Ochial S, Oya Y, Suzuki T.Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge[J]. Acta Metall., 1984, 32: 289
[57] Morinaga M, Yukawa N, Adachi H.Alloying effect on the electronic structure of Ni3Al (γ′)[J]. J. Phys. Soc. Jpn., 1984, 53: 653
[58] Mishima Y, Ochiai S, Suzuki T.Lattice parameters of Ni(γ), Ni3Al(γ′) and Ni3Ga(γ′) solid solutions with additions of transition and B-subgroup elements[J]. Acta Metall., 1985, 33: 1161
[59] Pollock T M, Argon A S.Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates[J]. Acta Metall. Mater., 1994, 42: 1859
[60] Caron P.High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications [A]. Superalloys 2000[C]. Champion, PA: TMS, 2000: 737
[1] Chuang DONG, Dandan DONG, Qing WANG. Chemical Units in Solid Solutions andAlloy Composition Design[J]. 金属学报, 2018, 54(2): 293-300.
No Suggested Reading articles found!