Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (6): 701-712    DOI: 10.11900/0412.1961.2014.00491
Current Issue | Archive | Adv Search |
CORROSION MECHANISM DISCUSSION OF X65 STEEL IN NaCl SOLUTION SATURATED WITH SUPERCRITICAL CO2
Liang WEI,Xiaolu PANG,Kewei GAO()
Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Liang WEI, Xiaolu PANG, Kewei GAO. CORROSION MECHANISM DISCUSSION OF X65 STEEL IN NaCl SOLUTION SATURATED WITH SUPERCRITICAL CO2. Acta Metall Sin, 2015, 51(6): 701-712.

Download:  HTML  PDF(14106KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the corrosion problem of steels under supercritical CO2/H2O system in oil/gas production has got more and more attention. The temperature and pressure of some oil wells in China usually exceed 120 ℃ and 100 MPa, where CO2 is in supercritical state. To transportation easier and cost reduction, the oil/gas in pipelines is usually pressured to a high pressure, normally causes CO2 in supercritical state. The supercritical CO2 corrosion environment includes CO2-saturated water and H2O-saturated CO2 phases. Moreover, corrosive ions such as Cl- usually exists in CO2 corrosion environment, however the influence of Cl- on corrosion of carbon steel in supercritical CO2-saturated NaCl solution and NaCl solution-saturated supercritical CO2 are investigated limited. The corrosion behaviors and corrosion rates of X65 carbon steel exposed in supercritical CO2-saturated 3.5%NaCl solution, supercritical CO2-saturated deionized water and NaCl solution-saturated supercritical CO2 systems were investigated. SEM, EDS and XRD were used to analyze the morphology and characteristic of corrosion product scale on the steel surface. The results show that the addition of Cl- in supercritical CO2-satureated water significantly increased the corrosion rate of X65 steel, and modified the FeCO3 grain morphology. The average corrosion rate of X65 steel in NaCl solution-saturated supercritical CO2 was much lower than in supercritical CO2-saturated NaCl solution, but in supercritical CO2 phase X65 steel suffered serious localized corrosion. The corrosion process of X65 steel in supercritical CO2-saturated NaCl solution could be divided into three stages: the first was the active dissolution stage, the surface of X65 steel was corroded inhomogeneous due to the competitive adsorption between Cl- and H2CO3, HCO3-, and Fe3C as well as some lumpish matrix were residued on steel surface; the second was the initiation stage of FeCO3 precipitation, Cl- postponed the precipitation of FeCO3, the FeCO3 scale formed in this period was incomplete, and increased the area of cathodic reaction subsequently the corrosion rate; the last was the protective stage of FeCO3 corrosion scale, the corrosion product scale formed in this period was denser and provided better protectiveness to X65 steel matrix, however Cl- could pass this scale and reach the scale/matrix interface, resulted in the corrosion rate of X65 steel keeping at a higher value than in deionized water environment. The corrosion model of normal pipelines was developed to better understand the corrosion mechanism in supercritical CO2-saturated Cl--containing solution.

Key words:  CO2 corrosion      supercritical CO2      X65 steel      Cl-      corrosion mechanism     
Fund: Supported by National Natural Science Foundation of China (No.51271024) and Beijing Natural Science Foundation Major Project (No.2131004)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00491     OR     https://www.ams.org.cn/EN/Y2015/V51/I6/701

CO2 pressure / MPa Immersion time / h Deionized water[9] NaCl solution
9.5 0.5 28.3 (±1.4) 90.0 (±7.4)
96 7.4 (±0.5) 13.5 (±1.8)
1.0 0.5 17.2 (±1.0) 44.4 (±0.2)
96 1.8 (±0.2) 7.5 (±1.1)
Table 1  Corrosion rates of X65 steel immersed in deionized water and NaCl solution at 80 ℃, 9.5 and 1.0 MPa for 0.5 and 96 h
Fig.1  Microstructure of X65 steel
Fig.2  Surface (a~c) and cross-section (d) morphologies of corrosion product scale on X65 steel immersed in deionized water for 0.5 and 96 h immersion at 80 ℃, 1.0 and 9.5 MPa

(a) 1.0 MPa, 0.5 h[9] (b) 9.5 MPa, 0.5 h (c, d) 1.0 MPa, 96 h

Fig.3  Surface (a, c, e, g) and cross-section (b, d, f, h) morphologies of X65 steel immersed in NaCl solution at 80 ℃, 1.0 MPa for 0.5 h (a, b), 9.5 MPa for 0.5 h (c, d), 1.0 MPa for 96 h (e, f) and 9.5 MPa for 96 h (g, h)
Fig.4  XRD spectra of corrosion product scale formed on X65 steel for 96 h with different immersion conditions
Fig.5  Surface (a) and cross-section (b) morphologies of corrosion product scale on X65 steel in water-saturated SC CO2 phase after 96 h immersion
Fig.6  Surface morphologies of X65 steel immersed in SC CO2 phase (a) and NaCl solution (b) for 96 h after removing corrosion product scale
Fig.7  Surface morphologies of corrosion product scale on X65 steel immersed in NaCl solution saturated with SC CO2 at 9.5 MPa and 80 ℃ for 12 h (a), 24 h (b), 50 h (c) and 168 h (d)
Fig.8  Cross-section morphologies of corrosion product scale on X65 steel immersed in NaCl solution saturated with SC CO2 at 9.5 MPa and 80 ℃ for 12 h (a), 24 h (b), 50 h (c) and 168 h (d)
Fig.9  XRD spectrum of corrosion product scale on X65 steel immersed in NaCl solution for 12 h at 9.5 MPa and 80 ℃
Fig.10  Changes of elastic modulus E of corrosion product scale with immersion time
Fig.11  EDS analyses (a) of the Cl--rich area at scale/matrix interface on X65 steel after immersed in NaCl solution saturated with SC CO2 for various time and the change of Cl- content with immersion time (b)
Fig.12  Changes of roughness Ra of X65 matrix with immersion time after scale-removing (a) and the outline plots of X65 steel after 0.5 and 96 h immersions (b)
Fig.13  Changes of corrosion rate of X65 steel in NaCl solution and deionized water[9] saturated with SC CO2 for various immersion time at 9.5 MPa and 80 ℃
Fig.14  Corrosion mechanism schematic of X65 steel immersed in NaCl solution saturated with SC CO2
[1] Gray L G S, Anderson B G, Danysh M J, Tremaine P G. Corrosion 1989, Houston: NACE, 1989: paper No.464
[2] Kermani M B, Morshed A. Corrosion, 2003; 59: 659
[3] Nesic S. Corros Sci, 2007; 49: 4308
[4] Nesic S, Postlethwaite J, Olsen S. Corrosion, 1996; 52: 280
[5] Choi Y S, Nesic S. Int J Greenhouse Gas Control, 2011; 5: 788
[6] Cui Z D, Wu S L, Zhu S L, Yang X J. Appl Surf Sci, 2006; 252: 2368
[7] Zhang Y C, Qu S P, Pang X L, Gao K W. Corros Prot, 2011; 32: 854 (张玉成, 屈少鹏, 庞晓露, 高克玮. 腐蚀与防护, 2011; 32: 854)
[8] Yevtushenko O, B?βler R. Corrosion 2014, Houston: NACE, 2014: paper No.3838
[9] Zhang Y C, Pang X L, Qu S P, Li X, Gao K W. Corros Sci, 2012; 59: 186
[10] Choi Y S, Magalhaes A A O, Farelas F, Andrade C D A, Nesic S. Corrosion 2013, Houston: NACE, 2013: paper No.2380
[11] Cui Z D, Wu S L, Li C F, Zhu S L, Yang X J. Mater Lett, 2004; 58: 1035
[12] Zhang Y C, Gao K W, Schmitt G. Corrosion 2011, Houston: NACE, 2011: paper No.11378
[13] Schremp F W, Roberson G R. Soc Pet Eng J, 1975; 15: 227
[14] Zhang Y C, Gao K W, Schmitt G. Mater Perform, 2011; 50: 62
[15] Yevtushenko O, Bettge F, Bohraus S, Baesslera R, Pfennig A, Kranzmann A. Process Saf Environ Prot, 2014; 92: 108
[16] Liu Q Y, Mao L J, Zhou S W. Corros Sci, 2014; 84: 165
[17] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2003; 39: 848 (陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2003; 39: 848)
[18] Schmitt G. Corrosion 1984, Houston: NACE, 1984: paper No.1
[19] Ikeda A, Mukai S, Uede M. Corrosion 1984, Houston: NACE, 1984; 1: 39
[20] Sun J B, Liu W, Yang L Y, Yang J W, Lu M X. Acta Metall Sin, 2008; 44: 991 (孙建波, 柳 伟, 杨丽颖, 杨建炜, 路民旭. 金属学报, 2008; 44: 991)
[21] Dugstad A. Corrosion 2006, Houston: NACE, 2006: paper No.06111
[22] Tanupabrungsun T, Brown B, Nesic S. Corrosion 2013: Houston: NACE, 2013: paper No.2348
[23] Dugstad A. Corrosion 1998, Houston: NACE, 1998: paper No.31
[24] Nesic S, Nordsveen M, Nyborg R, Stangeland A. Corrosion, 2003; 59: 489
[25] Sun W, Nesic S, Woollam R C. Corros Sci, 2009; 51: 1273
[26] Johnson M L, Tomson M B. Corrosion 1991, Houston: NACE, 1991: paper No.268
[27] Van Hunnik E W J, Pots B F M, Hendriksen E L J A. Corrosion 1996, Houston: NACE, 1996: paper No.6
[28] Hedayat A, Yannacopoulos S, Postlethwaite J. Corrosion, 1992; 48: 953
[29] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2002; 38: 411 (陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2002; 38: 411)
[30] Ramachandran S, Campbell S, Ward M B. Corrosion 2000, Houston: NACE, 2000: paper No.25
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[3] Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. 金属学报, 2018, 54(4): 537-546.
[4] Zhongming ZHANG,Kai YU,Weiwei REN,Ying MA,Chunjie XU,Zengzhe XI. MICROSTRUCTURE OF DIRECTLY EXTRUDED Mg-1Zn-1Ca ALLOY AND ITS CORROSION BEHAVIOR IN SBF SOLUTION[J]. 金属学报, 2015, 51(8): 985-992.
[5] LU Yunfei, YANG Jingfeng, DONG Junhua, KE Wei. THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS[J]. 金属学报, 2015, 51(4): 440-448.
[6] SUN Chong, SUN Jianbo, WANG Yong, WANG Shijie, LIU Jianxin. CORROSION MECHANISM OF OCTG CARBON STEEL IN SUPERCRITICAL CO2/OIL/WATER SYSTEM[J]. 金属学报, 2014, 50(7): 811-820.
[7] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
[8] WANG Changgang, DONG Junhua, KE Wei, LI Xiaofang. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF COPPER IN THE MIXED SOLUTION OF HCO3-, SO42- AND Cl-[J]. 金属学报, 2013, 49(2): 207-213.
[9] WANG Changgang DONG Junhua KE Wei CHEN Nan LI Xiaofang. RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-[J]. 金属学报, 2012, 48(11): 1365-1373.
[10] GUO Shaoqiang XU Lining CHANG Wei MI Yarong LU Minxu. EXPERIMENTAL STUDY OF CO2 CORROSION OF 3Cr PIPE LINE STEEL[J]. 金属学报, 2011, 47(8): 1067-1074.
[11] QIAO Bing DU Ronggui CHEN Wen ZHU Yanfeng LIN Changjian. EFFECT OF NO2AND Cl ON THE CORROSION BEHAVIOR OF REINFORCING STEEL IN SIMULATED CONCRETE PORE SOLUTIONS[J]. 金属学报, 2010, 46(2): 245-250.
[12] SONG Yiquan DU Cuiwei ZHANG Xin LI Xiaogang. INFLUENCE OF Cl$^{-}$ CONCENTRATION ON CREVICE CORROSION OF X70 PIPELINE STEEL[J]. 金属学报, 2009, 45(9): 1130-1134.
[13] ZHANG Guoying ZHANG Hui FANG Geliang YANG Lina. ELECTRONIC STRUCTURE OF DIFFERENT REGIONS AND ANALYSIS OF STRESS CORROSION MECHANISM OF Al--Zn--Mg--Cu ALLOYS[J]. 金属学报, 2009, 45(6): 687-691.
[14] YUAN Lei WANG Huaming. CORROSION BEHAVIORS OF Ni BASE SOLID SOLUTION-TOUGHENED Cr13Ni5Si2 ALLOY IN Cl- CONTAINING SOLUTIONS[J]. 金属学报, 2009, 45(11): 1384-1389.
[15] SUN Jianbo LIU Wei CHANG Wei ZHANG Zhonghua LI Zhongtao YU Tian LU Minxu. CHARACTERISTICS AND FORMATION MECHANISM OF CORROSION SCALES ON LOW--CHROMIUM X65 STEELS IN CO2 ENVIRONMENT[J]. 金属学报, 2009, 45(1): 84-90.
No Suggested Reading articles found!