Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 985-992    DOI: 10.11900/0412.1961.2014.00652
Current Issue | Archive | Adv Search |
MICROSTRUCTURE OF DIRECTLY EXTRUDED Mg-1Zn-1Ca ALLOY AND ITS CORROSION BEHAVIOR IN SBF SOLUTION
Zhongming ZHANG1,2(),Kai YU1,Weiwei REN1,Ying MA1,Chunjie XU1,Zengzhe XI2
1 Key Laboratory of Electrical Materials and Infiltration Technology of Shaanxi Province, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
2 Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032
Cite this article: 

Zhongming ZHANG,Kai YU,Weiwei REN,Ying MA,Chunjie XU,Zengzhe XI. MICROSTRUCTURE OF DIRECTLY EXTRUDED Mg-1Zn-1Ca ALLOY AND ITS CORROSION BEHAVIOR IN SBF SOLUTION. Acta Metall Sin, 2015, 51(8): 985-992.

Download:  HTML  PDF(4083KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The as-extruded Mg-1Zn-1Ca (mass fraction, %) alloys was fabricated successively by alloying, homogenization treatment and hot extrusion. The corrosion behavior of the alloy in simulated body fluid (SBF) solution was evaluated by electrochemical test and immersion test. The microstructure and morphology of corrosion product were observed by OM and SEM. Compositions of corrosion layer and different phases were investigated by EDS analysis. Fourier Transform infrared spectroscopy was also conducted to identify the functional groups in the corrosion products and XRD was also used to determine the phase constitutes of the corrosion products. The results show that Mg-1Zn-1Ca alloy consists of three phases, i.e. a-Mg, Mg2Ca and Ca2Mg6Zn3. After immersion in SBF solution for 72 h, the corrosion products is composed of HA (Ca10(OH)2(PO4)6), CaCO3, MgCl2 and Mg(OH)2. During the stage of immersion, the high active Mg2Ca phases act as the anode and corrode first, so they protect the around a-Mg substrate; the Ca2Mg6Zn3 phases are the lowest active, so they accelerate the corrosion of around α-Mg substrate. The corrosion resistance of as-cast Mg-1Zn-1Ca alloy are better than as-extruded alloy.

Key words:  Mg-1Zn-1Ca alloy      direct extrusion      microstructure      SBF solution      corrosion mechanism     
Fund: Supported by Shaanxi Provincial Science and Technology Plan Project (No.2010K10-08), Scientific Research Project of Education Department of Shaanxi Province (No.2013JK0906) and Research Project of Key Laboratory of Electrical Materials and Infiltration Technology of Shaanxi Province (No.ZSKJ201302)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00652     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/985

Fig.1  OM images of as-cast Mg-1Zn-1Ca alloy at low (a) and high (b) magnification
Fig.2  OM images of directly extruded Mg-1Zn-1Ca alloy along cross-sectional (a) and longitudinal (b) direction
Fig.3  XRD spectrum of as-cast Mg-1Zn-1Ca alloy
Fig.4  SEM images of secondary phases in intragranular (a) and along grain boundaries (b) for as-cast Mg-1Zn-1Ca alloy
Area Mg Ca Zn
A 67.10 13.90 19.00
B 69.30 26.80 3.90
C 85.37 12.47 2.16
D 87.10 4.13 8.77
Table 1  EDS analysis of second phases in as-cast Mg-1Zn-1Ca alloy corresponding to areas A~D in Fig.4 (atomic fraction / %)
Fig.5  XRD spectrum of directly extruded Mg-1Zn-1Ca alloys
Fig.6  Polarization curves of as-cast and directly extruded Mg-1Zn-1Ca alloys
Alloy Corrosion potential V Corrosion current density mA/cm2 Corrosion rate mm/a
As-cast -1.6749 7.7251 4.2857
Directly extruded -1.6372 5.9425 3.2021
Table 2  Electrochemical parameters of as-cast and directly extruded Mg-1Zn-1Ca alloys in simulated body fluid (SBF) solution
Fig.7  SEM images of corrosion products on surface of directly extruded Mg-1Zn-1Ca alloy at low (a) and high (b) magnification (Inset in Fig.7b shows the enlarged view of fluffy precipitate)
Area C O Na Mg P Ca Cl
A 6.28 61.93 0.50 9.12 12.88 9.29 -
B 8.92 61.44 - 25.41 1.26 1.29 1.67
C 5.31 63.25 - 10.14 11.30 10.01 -
Table 3  EDS analysis of directly extruded Mg-1Zn-1Ca alloy surface containing corrosion products after immersion in SBF solution for 72 h corresponding to areas A~C in Fig.7 (atomic fraction / %)
Fig.8  FT-IR spectrum of corrosion products on surface of directly extruded Mg-1Zn-1Ca alloy after immersion in SBF solution for 72 h
Fig.9  XRD spectrum of corrosion products of directly extruded Mg-1Zn-1Ca alloy after immersion in SBF solution for 72 h
Fig.10  Corrosion morphologies of as-cast (a) and directly extruded (b) Mg-1Zn-1Ca alloy after immersion in SBF solution for 72 h and removal of corrosion product
[1] Mark P S, Alexis M P. Biomaterials, 2006; 27: 1728
[2] Li K K, Wang B, Yan B. Corros Sci Protect Technol, 2012; 24: 181 (李锴锴, 王 冰, 严 彪. 腐蚀科学与防护技术, 2012; 24: 181)
[3] Moravej M, Mantovani D. Int J Mol Sci, 2011; 12: 4250
[4] Wen Z, Wu C, Dai C. J Alloys Compd, 2009; 488: 392
[5] Xin Y C, Huo K F, Tao H, Tang G Y, Chu P K. Acta Biomater, 2008; 4: 2008
[6] Hradilova M, Montheillet F, Frackiewicz A, Desrayaud C, Lejcek P. Mater Sci Eng, 2013; A580: 217
[7] Zhang X, Yuan G, Mao L, Niu J, Fu P, Ding W. Biomaterials, 2012; 7: 77
[8] Yin D S, Zhang E L, Zeng S Y. Trans Mater Heat Treat, 2009: 114: 118 (尹冬松, 张二林, 曾松岩. 材料热处理学报, 2009; 114: 118)
[9] Somekawa H, Mukai T. Mater Sci Eng, 2007; A459: 366
[10] Song W W, Martin H J, Hicks A, Seely D, Walton C A, Lawrimore II W B, Wang P T, Horstemeyer M F. Corros Sci, 2014; 78: 353
[11] Bakhsheshi-Rad H R, Abdul-kadir M R, Idris M H, Farahany S. Corros Sci, 2012; 64: 184
[12] Kokubo T, Takadama H. Biomaterials, 2006; 27: 2907
[13] Mao P L, Yu J C, Liu Z. Chin Trans Nonferrous Met Soc, 2013; 23: 889 (毛萍莉, 于金程, 刘 正. 中国有色金属学报, 2013; 23: 889)
[14] Wang Q, Wang J F, Huang S. J Mater Eng Perform, 2013; (11): 57 (汪 清, 王敬丰, 黄 崧. 材料工程, 2013; (11): 57)
[15] Liu C M,Zhu X R,Zhou H T. Phase Diagrams for Magnesium Alloys. Changsha: Central South University Press, 2006: 1 (刘楚明,朱秀荣,周海涛. 镁合金相图集. 长沙: 中南大学出版社, 2006: 1)
[16] Wasiur-Rahman S, Medraj M. Intermetallics, 2009; 17: 847
[17] Farahany S, Bakhsheshi-Rad H R, Idris M H, Abdul-kadir M R, Lotfabadi A F, Ourdjini A. Thermochim Acta, 2012; 527: 180
[18] Meng E C, Guan S K, Wang H X, Wang L G, Zhu S J, Hu J H, Ren C X, Gao J H, Feng Y S. Appl Surf Sci, 2011; 257: 4811
[19] Zhang X, Liang M J, Liao H H, Bai P K, Huang S. Hot Working Technol, 2014; 43(8): 9 (张 晓, 梁敏洁, 廖海洪, 白培康, 黄 莎. 热加工工艺, 2014; 43(8): 9)
[20] Fang S J, Liu Y H, Dong G D. Corros Sci Protect Technol, 2008; 20: 100 (方世杰, 刘耀辉, 佟国栋. 腐蚀科学与防护技术, 2008; 20: 100)
[21] Li Z J, Gu X A, Lou S Q. Biomaterials, 2008; 29: 1329
[22] Zhang S X, Zhang X N, Zhao C L, Li J N, Song Y, Xie C Y, Tao H R, Zhang Y, He Y H, Jiang Y, Bian Y J. Acta Biomater, 2010; 6: 626
[23] Du H, Wei Z J, Liu X W, Zhang E. Mater Chem Phys, 2011; 125: 568
[24] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R, Ourdjini A, Medraj M, Daroonparvar M, Hamzah E. Mater Des, 2014; 53: 283
[25] Kirkland N T, Birbilis N, Walker J, Woodfield T, Dias G J, Staiger M P. Biomed Mater Res, 2010; 95B: 91
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!