Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1500-1506    DOI: 10.11900/0412.1961.2015.00251
Current Issue | Archive | Adv Search |
NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL
Yawei PENG,Jianming GONG(),Dongsong RONG,Yong JIANG,Minghui FU,Guo YU
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816
Cite this article: 

Yawei PENG,Jianming GONG,Dongsong RONG,Yong JIANG,Minghui FU,Guo YU. NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2015, 51(12): 1500-1506.

Download:  HTML  PDF(811KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low-temperature surface carburization has proven to be one of the most effective techniques for improving the mechanical properties of 316-type austenitic stainless steel (Fe-Cr-Ni alloy), including surface hardness, fatigue resistance and wear resistance. It is well known that carbon diffusion in austenitic stainless steel is a very complicated process and still not fully understood. So it is of great importance to figure out the carbon diffusion mechanism in steel and establish a model that can predict the carbon concentration along the depth direction in any given carburization conditions. Studies in recent years reveal that trapping effect should be considered in carbon diffusion in austenitic steels at low temperature. In this work, low-temperature surface carburization treatment was carried out with 316L austenitic stainless steel, and the carbon concentration along the depth direction was measured. A kinetic model based on the "trapping-detrapping" mass transport mechanism for simulating the carbon fraction-depth profile was developed. This model considered that the diffusion of carbon under the influence of trap sites formed by local chromium atoms. Then the calculated carbon concentration was compared to the experimental results in order to check the validity of the model. The results show as follow: (1) in low-temperature-carburized 316L austenitic stainless steel, the carbon fraction-depth profile exhibits plateau-type shape which is not consistent with the standard analytic solution of the diffusion equation (Fick's law of diffusion); (2) carbon fraction-depth profile based on "trapping-detrapping" model is in good agreement with experimental carbon fraction-depth profile, which indicates the trapping effect plays an important role in carbon diffusion; (3) carbon diffusivity decreases by the trapping effect of Cr atoms, and the detrapping energy of carbon deduced from fitting experimental data is 165 kJ/mol; (4) the proposed model can only be used to describe the carbon diffusion in austenitic stainless steel during low-temperature surface carburization without chromium carbide precipitation. In addition, the influence of stresses induced by incorporating the carbon into austenite lattice on the carbon transport mechanism is not included in the trapping-detrapping model.

Key words:  austenitic stainless steel      surface strenthening      low-temperature surface carburization      carbon diffusion      trapping-detrapping model     
Fund: Supported by National Natural Science Foundation of China (No.51475224) and Natural Science Foundation of Jiangsu Higher Education Institutions of China (No.14KJA470002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00251     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1500

Fig.1  Microstructures of 316L austenitic stainless steel without carburizing (a) and gas carburized layers at 470 ℃ for 10 h (b), 20 h (c) and 30 h (d)
Fig.2  XRD spectra of 316L austenitic stainless steel without carburizing and after carburization at 470 ℃ for 10, 20 and 30 h
Fig.3  Experimental carbon concentration distribution along depth direction of 316L austenitic stainless steel after carburization
Fig.4  Experimental and calculated carbon concentrations in 316L austenitic stainless steel after carburiaztion at 470 ℃ for different times
Fig.5  Experimental and calculated carbon concentrations in 316L austenitic stainless steel after carburization at 470 ℃ for 20 h (C—total carbon concentration, Ct—carbon concentration at trapping site, Cd—carbon concentration at diffusion site)
Fig.6  Experimental and calculated C concentrations of 316L austenitic stainless steel after carburization at 470 ℃ for 20 h with different detrapping activation energies (Qt)
[1] Heuer A H, Qu J, O'Donnell L. Encyclopedia of Tribology. New York: Springer US, 2013: 2017
[2] Lo R H, Shek C H, Lai J K L. Mater Sci Eng, 2009; R65: 39
[3] Leyland A, Lewis D B, Stevenson P R, Matthews A. Surf Coat Technol, 1993; 62: 608
[4] Lewis D B, Leyland A, Stevenson P R, Matthews A. Surf Coat Technol, 1993; 60: 416
[5] Karabelchtchikova O, Sisson R D. J Phase Equilib Diff, 2006; 27: 598
[6] Gu X T, Michal G M, Ernst F, Kahn H, Heuer A H. Metall Mater Trans, 2014; 45A: 3790
[7] Wang Y F, Gong J M, Rong D S, Gao F. Acta Metall Sin, 2014; 50: 409
[7] (王艳飞, 巩建鸣, 荣冬松, 高 峰. 金属学报, 2014; 50: 409)
[8] Agarwal N, Kahn H, Avishai A, Michal G, Ernst F, Heuer A H. Acta Mater, 2007; 55: 5572
[9] Michal G M, Ernst F, Kahn H, Cao Y, Oba F, Agarwal N, Heuer A H. Acta Mater, 2006; 54: 1597
[10] Christiansen T, Somers M A J. Mater Sci Eng, 2006; A424: 181
[11] M?ller W, Parascandola S, Telbizoiva T, Gunzel G, Richter E. Surf Coat Technol, 2001; 73: 136
[12] Zhang Z P, Li P. Vacuum, 2014; 101: 321
[13] Parascandola S, M?ller W, Williamson D L. Appl Phys Lett, 2000; 76: 2194
[14] Rong D S, Gong J M, Jiang Y, Geng L Y. Chin Pat, 103323355 A, 2013
[14] (荣冬松, 巩建鸣, 姜 勇, 耿鲁阳. 中国专利, 103323355 A, 2013)
[15] Jackson W B, Tsai C C. Phys Rev, 1992; 45B: 12
[16] Abrasonis G, Rivie?re J P, Templier C, Pranevic?ius L, Barradas N P. J App Phys, 2005; 97: 124906
[17] Sun Y, Chin L Y. Surf Eng, 2002; 18: 443
[18] Liu W J, Brimacombe J K, Hawbolt E B. Acta Metall Mater, 1991; 39: 2373
[19] Agarwala R P, Naik M C, Anand M S, Paul A R. J Nucl Mater, 1970; 36: 41
[20] Farkas D, Delgado J. Scr Metall, 1983; 17: 261
[21] Ernst F, Li D Q, Kahn H, Harold, Michal G M. Heuer A H. Acta Mater, 2011; 59: 2268
[22] Agren J. Scr Metall, 1986; 20: 1507
[23] Sharghi-Moshtaghin R, Kahn H, Ge Y, Gu X, Martin F J, Natishan P M, Rayne R J, Michal G M, Ernst F, Heuer A H. Metall Mater Trans, 2010; 41A: 2022
[24] Grabke H J. Mater Corros, 2003; 5: 736
[25] Raic K T. Scand J Metall, 1993; 22: 50
[26] Munts V A, Baskakov A P. Met Sci Heat Treat, 1983; 25: 98
[27] Ernst F, Avishai F, Kahn H, Gu X, Michal G M, Heuer A H. Metall Mater Trans, 2009; 40A: 1768
[28] Ernst F, Cao Y, Michal G M, Heuer A H. Acta Mater, 2007; 55: 1895
[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[6] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[7] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[9] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[10] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[11] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[12] Sihan CHEN,Tian LIANG,Long ZHANG,Yingche MA,Zhengjun LIU,Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. 金属学报, 2017, 53(4): 397-405.
[13] Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 945-955.
[14] JIANG Yong, ZHANG Zuo, GONG Jianming. CARBON DIFFUSION AND ITS EFFECT ON HIGH TEMPERATURE CREEP LIFE OF Cr5Mo/A302 DISSIMILAR WELDED JOINT[J]. 金属学报, 2015, 51(4): 393-399.
[15] Dongsong RONG,Yong JIANG,Jianming GONG. EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1516-1522.
No Suggested Reading articles found!